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(57) Abstract: An insect gene drive system for biocontrol of a population of an insect is provided. The gene drive system includes:
a) a first DNA sequence encoding a toxin under the control of a maternal germline-specitic promoter active in the insect, with the
first DNA sequence being linked to b) a second DNA sequence encoding an antidote under the control of an early embryo-specific
promoter active in the insect. The toxin is expressed in maternal germline cells of the insect and results in maternal-effect lethality in
the insect, and the antidote is expressed in embryos of the insect and counters the maternal -effect lethality. In some embodiments,
the insect is Drosophila suzukii.



WO 2017/132207 PCT/US2017/014846

USE OF MEDEA ELEMENTS FOR
BIOCONTROL OF D. SUZUKII POPULATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001]  This application claims the benefit of Provisional Patent Application No.
62/286,946, filed on January 25, 2016, which is incorporated by reference herein.

REFERENCE TO SEQUENCE LISTING

[0002] A Sequence Listing is submitted electronically via EFS-Web as an ASCII
formatted text file with the name “1279611XPCSequenceListing”; the file was created on
January 23, 2017, is 9.45 kilobytes in size, and is incorporated herein by reference in its

entirety.
BACKGROUND

FIELD OF THE INVENTION

[0003] The invention relates to a composition and method for a gene drive system.

RELATED ART

[0004]  Spotted wing Drosophila, D. suzukii, is a pest of many small and soft fruits,
including cherries, raspberries, blackberries, blueberries, strawberries, peaches, grapes, and
others (Walsh et al. 2011). It damages these fruits by using its heavily sclerotized and
serrated ovipositor to pierce fruits and lay eggs inside the fruit. Most of the damage caused
by D. suzukii is a result of larvae feeding on fruit flesh. However, the insertion of the
prominent ovipositor into the skin of the fruit can also cause physical damage to the fruit, as
it provides access to secondary infections of pathogens — such as fungi, yeasts and bacteria —
that may cause faster fruit deterioration and further losses. These damages can result in
severe crop losses, and the implications for exporting producers may also be severe,

depending on any quarantine regulations.

[0005] A native of eastern and southeastern Asia, D. suzukii has invasively spread in the
last several decades, and has been recorded in China, India, Italy, Spain, Russia, and a
number of other countries (Walsh et al. 2011). D. suzukii has also rapidly invaded the U.S. —
initially found in California in 2008, it has spread to much of the Pacific Coast, to the East

1



WO 2017/132207 PCT/US2017/014846

Coast, and to north central and interior U.S. (Asplen et al. 2015) — and poses a significant
threat to fruit industries there. For example, in 2008, D. suzukii caused over $38.3 million in
cherry crop loss in California alone, and is predicted to result in up to $500 million in annual

losses in U.S. Western fruit production areas (Goodhue et al., 2011).

[0006]  Current method of control of D. suzukii rely heavily on the use of expensive non-
insect specific insecticides (e.g., malathion), which have variable efficacy (Asplen et al.
2015) and also kill beneficial insects like pollinators (e.g., honeybees) and useful predator
(e.g., green lacewings, which prey on various harmful insects like black cherry aphids and
small caterpillars). As an alternative to insecticides, farmers can also attempt to trap D.
suzukii using chemical attractants; however, no D. suzukii specific attractants are currently
available (Walsh et al. 2011), and this approach is not particularly effective at preventing D.
suzukii spread. And while biological control of D. suzukii may be possible via use of recently
identified natural predators (Gabarra et al. 2015), no established means of D. suzukii
biocontrol currently exists (Woltz et al. 2015). Overall, given the rapid spread and potential

economic impact of 1. suzukii, effective control measures are urgently needed.

SUMMARY

[0007] A Medea system is developed in D. suzukii that can be used as a form of
biocontrol. Other similar systems can be built in D. suzukii and in related fly pests, such as in
the Caribbean fruit fly, Anastrepha suspense, the Mexican fruit fly, Anastrepha ludens, the
West Indian fruit fly, Anastrepha oblique, and other insect pests.

[0008]  In one aspect, a gene drive system for biocontrol of a Drosophila suzukii
population is provided. The gene drive system includes: a) a first DNA sequence encoding a
toxin under the control of a maternal germline-specific promoter active in D. suzukii, with the
first DNA sequence being linked to b) a second DNA sequence encoding an antidote under
the control of an early embryo-specific promoter active in D. suzukii. In this D. suzukii gene
drive system, the toxin is expressed in D. suzukii maternal germline cells and results in
maternal-effect lethality in D. suzukii, and the antidote is expressed in D. suzukii embryos and

counters the maternal-effect lethality.

[0009] In another aspect involving the D. suzukii gene drive system, a transgenic D.

suzukii whose genome includes the D. suzukii gene drive system is provided.
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[0010] In a further aspect involving the D. suzukii gene drive system, a method of
manipulating a D. suzukii population is provided. The method includes releasing the
transgenic 1. suzukii into the population in sufficient numbers to spread the gene drive
system through the population. In some embodiments, the gene drive system further includes
an effector genetic element, which can result in inducible lethality in one or both sexes of D.
suzukii, or in recessive sterility in one or both sexes of D. suzukii. The population can be a

laboratory or wild population.

[0011] More generally, in another aspect, an insect gene drive system for biocontrol of a
population of an insect is provided. The gene drive system includes: a) a first DNA
sequence encoding a toxin under the control of a maternal germline-specific promoter active
in the insect, with the first DNA sequence being linked to b) a second DNA sequence
encoding an antidote under the control of an early embryo-specific promoter active in the
insect. In this system, the toxin is expressed in maternal germline cells of the insect and
results in maternal-effect lethality in the insect, and the antidote is expressed in embryos of

the insect and counters the maternal-effect lethality.

[0012] In some embodiments involving the insect gene drive system, the insect is not
Drosophila melanogaster or a flour beetle. In some embodiments, the insect can be
Drosophila suzukii, Anastrepha suspensa, Anastrepha ludens, Anastrepha oblique,
Bactrocera oleae/Dacus oleae, Ceratitis capitata, Aedes aegyptii, Anopheles gambiae, or any

other insect in which a gene drive system may be of utility.

[0013] In a further aspect involving the insect gene drive system, a transgenic insect
whose genome includes the insect gene drive system is provided. In some embodiments, the
transgenic insect is not Drosophila melanogaster or a flour beetle. In some embodiments, the
transgenic insect can be Drosophila suzukii, Anastrepha suspensa, Anastrepha ludens,
Anastrepha oblique, Bactrocera oleae/Dacus oleae, Ceratitis capitata, Aedes aegyptfii, or

Anopheles gambiae.

[0014] In another aspect involving the insect gene drive system, a method of manipulating
an insect population is provided. The method includes releasing the transgenic insect into a
population of the same species in sufficient numbers to spread the gene drive system through
the population. In some embodiments, the transgenic insect is not Drosophila melanogaster

or a flour beetle. In some embodiments, the transgenic insect can be Drosophila suzukii,
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Anastrepha suspensa, Anastrepha ludens, Anastrepha oblique, Bactrocera oleae/Dacus

oleae, Ceratitis capitata, Aedes aegyptii, or Anopheles gambiae. In some embodiments, the
gene drive system further includes an effector genetic element, which can result in inducible
lethality in one or both sexes of the insect, or in recessive sterility in one or both sexes of the

insect. The population can be a laboratory or wild population.

[0015] In any embodiment involving the D. suzukii gene drive system or the more general

insect gene drive system:

a) the toxin can include one or more miRNAs, one or more RNA-guided

endonucleases, or a combination thereof;,

b) the toxin can target a gene for a maternally-deposited embryonic-essential RNA,
a maternally-deposited embryonic-essential protein, a zygotically-expressed embryonic

essential gene, and the like, of 1. suzukii or another insect;
c¢) the target gene can be the myd88 gene of D. suzukii or another insect;

d) the antidote can be a toxin-resistant version of the target gene, or another gene
that can substitute for/fulfill the biological role of the target gene; in some embodiments, the

toxin-resistant version is a version not recognized by the toxin;

e) can further include an effector genetic element active in D. suzukii or other
insect and linked to the first and second DNA sequences, with the effector genetic element
encoding a gene conferring susceptibility to a chemical, a conditional lethal gene, a genetic
element that disrupts a recessive fertility gene or recessive lethality gene, or a genetic element
that disrupts a gene involved in D. suzukii pest behavior, such as ovipositor formation,
olfaction, egg laying substrate preference and other such behaviors; or any other genetic
element that reduces or eliminates the effect of D. suzukii pest behavior or the effect of pest

behavior of another insect; or

f) any combination of a) - e).
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BRIEF DESCRIPTION OF THE DRAWINGS

[0016]  For a more complete understanding of the present invention, reference is now
made to the following descriptions taken in conjunction with the accompanying drawings, in
which:

[0017]  Figure 1 is a panel describing Medea genetics. (1A) Heterozygous females
carrying Medea cause death of all offspring that fail to inherit Medea. (1B) Synthetic Medea
elements contain two genes - maternally expressed miRNAs (the toxin) that silence the
expression of a maternally expressed transcript (top line) that normally provides a product
essential for early embryonic development, and a zygotic antidote consisting of the silenced
maternal mRNA (resistant to the miRNA toxin) sufficient to rescue normal development

(vertical line). Adapted from Akbari et al. 2012.

[0018]  Figure 2 is a schematic drawing of a portion of a P transposable element vector
including, 5’ to 3’, a Hr5Iel-drived dsRed marker, miRNAs driven by the BicC promoter,
recoded Myd88 CDs driven by the bnk promoter, and a 3xP3-GFP marker.

DETAILED DESCRIPTION

[0019]  An alternative approach that would complement current control methods would be
the use of genetically engineered D. suzukii as a biological control agent. Use of genetically
modified insects for wild population manipulation was first suggested many decades ago
(Serebrovskii 1940; Hamilton 1967; Curtis 1968), and has garnered a considerable amount of
interest since (Burt 2014). Proposed methods typically rely on the use of engineered gene
drives based on “selfish” genetic elements (SGEs) that function by forcing inheritance in a
non-Mendelian fashion, allowing them to increase in frequency with each generation even
without conferring a fitness advantage upon their hosts (Burt 2014; Alphey 2014; Bull 2015).
Such methods can be utilized to spread desirable genes linked to the gene drive through a

population or to suppress target insect populations (Sinkins and Gould 2006).

[0020]  One type of gene drive system is the maternal effect dominant embryonic arrest
(Medea). Medea was first discovered in the flour beetle (Wade and Beeman 1994), and
multiple versions were later reverse engineered from scratch and shown to act as robust gene
drives in the laboratory fruit fly, Drosophila melanogaster (Chen et al. 2007; Akbari et al.

2013). Such engineered Medea systems rely on a Medea element consisting of a toxin-
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antidote combination. The toxin consists of a miRNA that is expressed during oogenesis in
Medea-bearing females, disrupting an embryonic essential gene. A linked antidote is
expressed early during embryogenesis and consists of a recoded version of the target gene
that 1s resistant to the miRNA. This combination results in the survival of half of the embryos
originating from a Medea-bearing heterozygote female, as those that do not inherit the Medea
element die. If a heterozygous Medea female has mated with a heterozygous Medea male, the
antidote from the male will also take effect in the embryo, resulting in 3/4 of the embryos
surviving (Fig. 1). Therefore, Medea will rapidly spread through a population, carrying any
linked genes with it.

[0021] Inthe case of D. suzukii, since elimination of the pest population is ultimately of
interest, an engineered Medea system could spread a gene proffering susceptibility to a
particular pesticide, or a conditional lethal gene that would be activated by some substance or
environmental cue such as diapause (a state that allows insects survive periods of adverse
conditions such as cold; Clark et al. 2008). For example, a Medea element can be used to
spread a gene conferring sensitivity to a particular chemical that is normally innocuous,
rendering such a chemical capable of being used as an environmentally-friendly, species-
specific pesticide. Trigger-inducible transcription control elements — ones that turn on
expression in the presence of a chemical such as tetracycline or vanillic acid (Urlinger et al.
2000, Gitzinger et al. 2012) — can be engineered to drive expression of an insect-specific
toxin (e.g., Fu et al. 2007). A Medea element can also be used to spread a gene under the
control of a diapause-induced promoter that will splice to produce a toxin in females only, so
that, upon the onset of the diapause-inducing environmental cue, all of the females will
perish, causing a population crash (Akbari et al. 2013). Further, if a Medea element 1s
inserted into a fertility gene, it could cause a population crash by spreading through a
population and making it infertile as it does. However, although transgenesis of D. suzukii
has been established (Schetelig et al. 2013), no gene drive systems in this major pest have yet

been engineered.

[0022] In embodiments of the D. suzukii gene drive system or the more general insect
gene drive system described herein, a toxin can be an miRNA or an RNA-guided

endonuclease.

[0023] MicroRNAs (miRNAs) mediate the RNAi1 pathway. The term "microRNA" or

"miRNA" as used herein indicates a class of short RNA molecules of about 22 nucleotides in
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length, which are found in most eukaryotic cells. miRNAs are generally known as post-
transcriptional regulators that bind to complementary sequences on target mRNA transcripts,
usually resulting in translational repression and gene silencing. miRNAs are encoded by
miRNA genes and are initially transcribed into primary miRNAs (pri-miRNA), which can be
hundreds or thousands of nucleotides in length and contain from one to six miRNA
precursors in hairpin loop structures. These hairpin loop structures are composed of about 70
nucleotides each, and can be further processed to become precursor-miRNAs (pre-miRNA)
having a hairpin-loop structure and a two-base overhang at its 3' end. In the cytoplasm, the
pre-miRNA hairpin is cleaved by the RNase III enzyme Dicer. Dicer interacts with the 3' end
of the hairpin and cuts away the loop joining the 3' and 5' arms, yielding an imperfect
miRNA:miRNA duplex about 22 nucleotides in length. Overall hairpin length and loop size
influence the efficiency of Dicer processing, and the imperfect nature of the miRNA:miRNA
base pairing also affects cleavage. Although either strand of the duplex can potentially act as
a functional miRNA, only one strand is usually incorporated into the RNA-induced silencing

complex RISC where the miRNA and its mRNA target interact.

[0024] An RNA-guided endonuclease is a nuclease such as CRISPR-associated 9 (Cas9)
or Cpf1, that is directed by guide RNAs to target and cleave specific nucleotide sequences
either in DNA or RNA. Such an endonuclease may be used to cleave or silence a target gene
RNA similarly to an miRNA. Examples of RNA-guided endonucleases include, but are not
limited to, Cas9, C2C2, Cpfl, Casl3a, Casl3b, and any other suitable Cas-type proteins.

[0025]  Other toxins include siRNAs and maternally supplied protein toxins (e.g.

cell death genes, restriction endonucleases, insect toxins, e.g.,barnase).

[0026]  The particular toxin that is used will depend on the selected target. A toxin can be

prepared by standard molecular biological methods.

[0027] Examples of maternally-deposited embryonic-essential RNAs or proteins for use as
toxin targets include, but are not limited to, myd88 (NCBI Gene database, Gene ID: 35956),
Groucho (NCBI Gene database, Gene ID: 43162), DAH (NCBI Gene database, Gene ID:
32459), O-futl (NCBI Gene database, Gene ID: 36564), homologs of such promoters in other
insects, and other D. suzukii and insect promoters identified by analyzing expression data. In
some embodiments of the D. suzukii gene drive system or the general insect gene drive

system, the toxin target is not myd88 but is another target.
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[0028]  The antidote can be a modified version of a target. The modified version can
include nucleotide sequence changes that prevent an miRNA or RNA-guided endonuclease
toxin from binding to the modified target sequence. The particular antidote can be prepared
by standard molecular biological methods and will depend on the selected target. Examples
of other types of antidotes include, but are not limited to, zygotically expressed RNA,
CRISPR, or siRNA to the toxin when the toxin is a protein.

[0029]  Examples of maternal germline-specific promoters include, but are not limited to,
bicoid, vasa, deadhead, zpg, and exu promoters, homologs of such promoters in insects, and

promoters of other genes expressed specifically in the female germline.

[0030] Examples of early embryo-specific promoters include, but are not limited to,
bottleneck, malpha, twi, ocho, and tin promoters, homologs of such promoters in insects, and

promoters of other genes expressed specifically in the early embryo.

[0031]  For a D. suzukii gene drive system or general insect gene drive system that
contains an effector genetic element, the components of the system can be organized in
various arrangements depending on the nature of the effector element. For example, the
effector element can be located downstream of, or between, the first and second DNA
sequences, or the first and second DNA sequences can be located within the effector genetic
element. Other arrangements are possible as long as the first and second DNA sequences and

the effector genetic element sequences are present.

[0032]  The D. suzukii gene drive system or general insect gene drive system can be
present, for example, in a DNA construct, in a nucleic acid vector such as a cloning vector or

a P transposable element vector, or iz vivo in an insect.

[0033]  Although D. melanogaster and D. suzukii are closely related, in attempting to
transfer the technology described here from the former to the latter, there was no reasonable
expectation of success in preparing a D. suzukii gene drive system, and the results described

here are unexpected. This is due to two primary reasons.

[0034] Firstly, although D. suzukii is a significant threat to agricultural output on a global
level (Asplen et al. 2015), it is rather poorly studied compared to the extremely well-
understood D. melanogaster, and few genetic tools that allow basic transgene construction

and precise genome manipulation have been developed. A draft genome was assembled in
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2013 (Chiu et al. 2013), and since then, transgenesis has been demonstrated once (Schetelig
and Handler 2013) and a single study has shown that direct injection of CRISPR/Cas9 can
result in mutation (Li and Scott 2015). This represents a very small genetic toolkit, especially
when compared to other insects where gene drive is of interest, such as mosquitoes (e.g.,
Esvelt et al. 2014). D. suzukii can be more difficult to work with in the laboratory than D.
melanogaster as it has different temperature and other environmental needs (Kinjo et al.
2014), making fewer researchers willing to work with it. The lack of genetic tools and the
potential difficulties in rearing the insect possibly explain why no transgenic gene drive
components, let alone functional gene drive systems, have yet been created in D). suzukii,

despite the need for such elements.

[0035]  Additionally, the Medea gene system itself is quite difficult to engineer in any
organism, especially in one lacking a complete genetic tool kit, when compared to other gene
drive systems. As outlined, for example, in Champer et al. (2016), Medea systems have not
yet been developed in mosquitoes or other insects besides D. melanogaster, despite
researcher efforts. This is due, in part, because a Medea system such as the one demonstrated
by Chen et al. (2007) requires effective RNAi-mediated silencing in the germ line, which has
been difficult to achieve in species other than D. melanogaster, and also because such a
system depends on identification and functional characterization of maternal and zygotic
promoters, embryonic essential target genes, and other genetic elements, that is lacking in
many target species (including D. suzukii). Simply put, the type of Medea system developed

in Drosophila melanogaster 1s not highly portable to different organisms.

[0036]  Therefore, the success of such a system in a pest species is unexpected given the

knowledge regarding said system in the field of gene drive.

[0037] Having demonstrated the transfer of the Medea system to D. suzukii, however, the
transfer of the system to other insects is now expected to be successful because the requisite
tools (germline RNA1, RNA CRIPSR, etc.) can now be made available, and the proof of
principle for D. suzukii described herein shows that attempting this in other insects with

similar conserved genes is now feasible.

[0038] The present invention may be better understood by referring to the accompanying
examples, which are intended for illustration purposes only and should not in any sense be

construed as limiting the scope of the invention.
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EXAMPLE 1

Methods

Generation and testing of D. suzukii Medea

[0039]  To create a Medea-like maternal-effect selfish genetic element 10 D. suzukii,
synthetic Medea elements were engineered based on the same architecture used to generate
the Medea™* system previously built in D. melanogaster (Chen et al. 2007). In D.
melanogaster, maternal Myd88 is required for dorsal-ventral patterning in early embryo
development, and germ-line loss-of-function myd88 mutant fernales produce embryos that
fatl to hatch (Kambris et al. 2003). Myd88 is highly conserved in 7. suzukii (and in many
other Drosophilids), and it was reasoned that Myd88 would likely be essential in this species,

as well.

[0040] Briefly, a P transposable element vector was generated in which the predicted D.
suzukii female germ-line—specific bicoid (bic) promoter drives the expression of a “toxin”
containing three synthetic microRNAs (miRNAs) designed to target the 5° untranslated
region (UTR) of D. suzukii myd88. (The synthetic miRNAs were generated using the mir6.1
backbone, as described by Chen et al. 2007.) The vector was generated by cloning DNA
pieces generated by PCR into a standard Drosophila melanogaster P element vector via
Gibson assembly (Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith
HO (2009). "Enzymatic assembly of DNA molecules up to several hundred

kilobases". Nature Methods. 6 (5): 343-345). The vector also contains an “antidote”
transgene containing D. suzukii myd88, recoded to be insensitive to the miRNAs, expressed
under control of the early embryo—specific bottleneck (bnk) promoter (Schejter et al. 1993).
The vector also contained two separate transformation markers — GFP under control of the
eye-specific 3xP3 promoter (Berghammer et al. 1999), and dsRed under control of the
ubiquitous opie2 promoter (Theilmann and Stewart, 1992) (Fig. 2).

[0041] The sequences of the miRNAs used are as follows, with guide and passenger

strands capitalized:

a) miRNA 1:
tttaaagiccacaactcatcaaggaaaatgaaagtcaaagttggcagettacttaaacttaatcacagectitaatgt AAAATTAA

AAAAAAATAGTACT AtaagttaatataccataictaTATTACTATTTTTTTTTAATT T Tgtacctaaag

tgcctaacatcattatttaattttittttttitggcacacgaataaccatgeegtitt (SEQ ID NGO 1)

10
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b) miRNA 2:

ctttaaagtccacaactcatcaaggaaaatgaaagtcaaagttggeagettacttaaacttaatcacagectttaatgt TCCCGCGC
TTCATCGTTTTC C T Ttaagttaatataccataicta AATAAAACGATGAAGCGC GGG Agtacctaaagts

cctaacatcattatttaattittittitttitggcacacgaataaccatgeegtitt (SEQ ID NO. 2)

¢} miRNA 3:

atttaaagtccacaactcatcaaggaaaatgaaagtcaaagttggeagettacttaaacttaatcacagectttaatgt ACGTCCC G
TTGATAAATACCT Ataagtiaatataccatatcta TATGTATTTATCAACGGGACGTglacctaaagtg

cctaacatcattatttaattittittitttitggcacacgaataaccatgeegtitt (SEQ ID NO. 3)

[0042]  The sequence of the miRNA-expressing promoter (predicted bicoid promoter) used

is as follows:

CTGCTGAAACCATCGGUCOGTAAACCTCTAATTAAGGCTAGTAACCTTTGTAGAAAA
TTATTTAGTTTATATTTTTAAACATAAATTATTTTTGAAATTGTAACTAAAAATGT
ATGCCTATTTTAAAAATTCCTTONTAAGAAAATTAGTTTAAGTAGTACACTTTTGA
COGCTCACTGTATCAAAATTTTTCTGGAGCGCCATCTGOGGAGCTTACTCAATTTC
AAAAGCTTTACTTTACTTAGGTAAAGGGCCGAAGATAAAAGCTGACGTAGGATT
TTAACTGAATGGGAGCTTTCTAAGOGTTGTTTATGCACTGGAGAGATAGTAGATAA
ATGCACTTCCCACAGAACCCAGAGCTTTCGGATCTGAAGGTCAGTTGGGACTTGG
ACCCACAAGTCOGAGCTTAGTTTAATAGTCAGCGCGCTTAAACGACGACAACTGC
ACGGCOGCGUCCCCCATTAATAATATATATTTTTCCAAAAATAAACTTAAAAAAAAT
AATTAAATAAAAAATAATATTAACATTGAACGCGCGOTGCACGATTTTTTGACAA
CAATTCAGTTTCOGCTTTTCCTTAGATTTCCATATAATTTITTTCOTTTGTOGTTTTCCA
CACACGTGOTOGTTCTTCTGTTACTCGCACTTCGGTAGTGGTTATTTITTITTGGGTT
ACATTGAAAAAAGTACATCGACTGCCAGCCGAATTCCCATTCGAACCTTAATTTG
ACCAATTGACGGAAAATTAATTGCGCACAAAATTAATTAGCAAGCGAATATATA
TTITTTTTTTITACGTGAAACGAGCOTGTITATTTGTCAAAAAGATTTTACAACTGAT
TGTGTTTAAGTAAATTAACCTGAGATATATCTATGTGTTTGTGCTACGATCCGAA
ATTCCAATATTGCGGTAAGTOGGTOTGATTTTTGOCGGGAATAAAATCGGTTTCCC
TTTGCOGTCGTATTTCTCTCCCGATTTITICTGGCGCCAAAATGAATGAAAACGGTTG
GCAACATTTTCAACTTAACATGGCAACATGCGAATCTAACCGCTGTTAGGGGAAC
TTGTAAGGGAACATGTTAGAAATTCTGGAACACCTCTCCAACTTTGTTTTGTTTGCG
CGCTCTCTCTTTCAAATGTAGAATCTCTTATTTTGGAACGGGAGCGOTTCATTGAC
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CCAGCAACAACAATATTCGCCATATCTTICTCCTTCCCAGCGATTTGCAGAATTCA
TCCGTACTACAGTTAGAAATAATTCTAGTCCAACAGTAAGCAAAGTCGATCGGUG
AAATCOGGUAGCCOCGTTCAGTTGUCTTCGAGCCOGTACTTAGAAGTGGTAGAGCCC
CCAGGAATCGOAGAGATTATCCCGTAACTTGATACTCTGACGAAATCCCCCAGAL
AGACCCCTCGCAATCACACACAGUTATATACTGATATATAGATCTATATATATTG
CGCAGATCACCCTTTAAATGCCTTTCOTCCAGAGATTICCAACAAATACGTAATTT
TGTTATGAACGTCTGCCTCGTCOGAGGUCATCCAATTCOTGUCAGGACCTCACGCAT
GCCCTCTGCCTGGACCTCCAGGGUCTGTTCAACCTCAAGTAGAGATTCCCGAGCG
ATCTCCCAGUGGTAAGTCACGCCATTTGGUCGUGGLLCGUGAAAAGTGAAAGTG
CGGGAGAAATTACGGTTATCGGGTTTTCGGGAGAAAGGGGAAAGTGGAAACCTC
ATGGCAGCAGCCCTCCATTTTGAGAGOTTATGTCAAAGGAAAGGAAGAGAAAGG
AAGTTAAAAAATGTTAGCAAGGAAAATATTAGCCTTCOTTTTTCATAAGTACACC
AATAAACCACATTTTACTGOGTGTCAAAAGTTAGAGAATTAAACAGCAAGTTAC
CAAAATTAGTTTGAAGGCAAAACTTTAGCTAGTTACGTTTTTAGAGGGTTCTGGA
ATTACAAATGCCCACAGCAGGAGAAATATAAATTTGTGTTTTICATTTTAAACAGA
TTATGTTTTAAAAAGTAATACATCAAAATTGACTTTAGCCGTTTTTTAAATAGGTA
ATTTGGTATATAAACATACATTTTTTAATAAAAATATGAACACTTTGTTTTTATTT
TTGTACTGOGTAGGCAAACTACAAGATATAACTGTTAAATAAAAAAAGATTTTAA
GTGTAGGCAATAAAAAATCAAATCAAAAATATATTTTGAATAAAAGTGAAGGTC
AAAAATGAAAGACTTCAAAGTACCACTCTACTCATGAAGUTATAATAATAATGG
GTAAATAAACAGTATATTACATGTTCGTTTTAAATATTTTICAATGCAAAAATGCC
CTOCTTATATTAAGCTTTACTTTCACCACAACTGTTCCCATCATCTATTTTTAATAT
TATTGACCTCGGACTTCTTACATTTCATCGCCAGCTCATCCCATCAATCACCCAGA
TAAACTACCACCTTCATTAACACACCGCAAGCATCTCACAACGCTGACCAATAAA
CGUCTCGACATCCAGAATCCCCAACTGAGACGGACGTTTTGCTTGOGTTTTTAAAA
CTAAACGACCCTTTGGTAGCCGCACCTATTGACCTTTCACACATTICATATCCCTCG
GTCCACAAGCCGACCCACTGATCCATTCATTCACCTCCCACG (SEQIDNO. 4)

[0043] The antidote transgene sequence used, including the bottleneck promoter, MYD88
Coding Sequence, and SV40 3” UTR, is as follows (MYD88 coding region capitalized):

atgaaccctattaagatcccgacaccicttttcgectitetgeataataatitcgecatticcaccgetgtataattgegtattegecttcagtaa
atgaaaattgeagttgtattitataatttcgtttttcattttcectetcteattitctacgtct gtttggecagetgtcaattgecgagtgtegactg

aattattggecatiaatigeatigatttigatigtaatgaaccagetaatgaaacgicaacageiaagagtggeccataaaacccggagea
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attatcttctagaaaccttgaacatcigtegegaatttaagtitttaagetgtttatgaattagtaccetcgetaatecttttcgaaaggaccttat
aaaagtgcgeggattagcaaaaagalttgtgtaaaatiggigcecgeaaaacacgeaaaaticgegtgetcgggttocaattaccggg
aaatgtggecctitittactigcaggecttagetagtitcccggaatggagtcaagetaagetagecaggtacctgagitccecggacca
getgtecggtgctgaaactagageaggtagiccccagaateccagetatataaggectgecticetggeaacageatcacattegticat
cagecttcaaccctage ATGUGCCCTCGATTTGTATGCCATCAGCAGCACTCGGTGGCCCA
TTCCCACTTCCATCCCCTGTCTCACTTCCAGACCCATTCCCATACCCATACCCACT
TCCAGCGCCATCCCAATCCCCATCCCCATCCCCATCACTTTTACGACGCCACTGA
CGTCGGCTATCGGCGTTATCGCACCGCCAACATGOTGGTGGCCGAGGGAGTTATG
GACTCCGGATCGGOGATCGGTACGGGAATGGGAATGGGGCACTTCAACGAGACT
CCCTTATCCGAGCTGGGCGTGGAGACCCGCTCGCAGCTGTCCCGCATGCTGAACC
GCAAGAAGGTGCTGCGCTCCGAGGAGGGCTACCAGCGGGACTGGCGGGGCATCT
CGOAGCTGGCCAAGCAGAAGGGATTCGTCGACGAGAACGCCAACAATCCCATGG
ATCTGGTGCTGATCAGCTGGAGCCAGCGGAGCCCGLCAAACCGCCAAGGTGGGLC
ATCTCGAGAACTTCCTGGGCATCATCGATCGGTGGGATGTCTGCGACGATATCCA
GGAGAATCTGGCCAAGGACACCCGGCGCTTICATCATAAAGCAGGAGCAGCGGCA
GACCTCTCTGGTGOAGGCOGTGTCCCCCGUCCCCCAGCGACTGTTTCGAGACCAAL
AACAACTACAGCAGCAACAACAACATCACAGTGGGCCAAAGTGTCCAGATCCTG
AGCOACGAGGATCAGAGATGTGTGCAGATGGOCCAACCGCTGCCCAGATACAAT
GCCTGTGTCTTGTACGCAGAGGCAGACATCGATCATGCCACCGAGATCATGAATA
ACCTAGAGTCTGAGCGATACAATCTCAGGCTTTTCCTGCGCCATCGCGACATGLT
AATGGGCGTACCCTTCGAGCATGTCCAACTCTCCCACTTCATGGLCACCCGOTGY
AATCACCTGATCGTCGTGCTCACAGAGGAGTTTICTTCGGAGTCCGGAGAACACGT
ACCTCGTGAACTTCACCCAGAAGATACAAATCGAGAACCACACTCGCAAGATCA
TACCGATTCTGTACAAGCCAGACATGCACATACCCCAGACCCTGGGCATCTATAC
GCACATCAAGTACGUCGGGGACTCCAAGTTGTTCAACTTCTGGGACAAGTTGGCT
CGATCGCTGCACGATCTGGATGCCTGTTCCATTTACTCCACGCGCCAGGTGCAAA
CACCCTCGCCAGTGGAGGAATCGACTCCCCAGCGGGTGACCACGCCCAGCATTC
GGATACAGATCAACGACAAGGATGTGACCGACATGCCCAACTTICAAGGTGLCGG
AGGCGGAGACCACCATCOGTTTCGOGTATCCGGCGATACCGGTTCCCCTCTGCCGGA
ACACAAGCCGAAGAAAAAGGATCGCTTTCTGCGAAGAATCACGCACAGTTTCGC
CAAGACACCGAAGAATGAGGGGAGCAGTGCGAAGACCCTGCGACACGCGCACT
CCGTCAGCACCATAAATGTCACGGAACGGGAGAGGACACTCAGTGCCAGCAGCT
CCAATATCTCCACCACCTCGGAGAGCAAGAAGAGCTTCATCAAGTGGCAGCCGA
ATATCCTGAAGAAGGCCCTATTCTCCCGATCCAGCAACAAGCTACAGACGCCGE
13
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GTTGAcatatggatctitgtgaaggaaccttactictgtggtgtgacataattggacaaactacctacagagatttaaagetctaaggt
aaatataaaatttttaagtetataatgigttaaactactgatictaatigtitgtatatittagaticcaacctatggaactgatgaatgggagca
gtggtggaatgcctitaatgaggaaaacctgtittoctcagaagaaatgccatctagtgatgatgaggctactgetgactetcaacaticta
ctectecaaaaaagaagagaaaggtagaagaccecaaggactticcttcagaattigetaagitttitgagteatgetgtgtitagtaataga
actcttgetigetttoctatitacaccacaaaggaaaaagetgeactgetatacaagaaaattatggaaaaatatitgatgtatagtgecttg
actagagatcataatcagecataccacatitgtagaggttttactigetttaaaaaaccteecacacctecccctgaacctgaaacataaaa
tgaatggaatigitgttatiaacitgtitatigeagettataatggitacaaataaageaatageatcacaaatticacaaataaageattititt
cactgeattctagttgtggtitetceaaacteatcaatgtatettateatgtetggttccaagegetecgtacgegtatcgataagetitaaga
tacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgcttiattigtoaaatttgtgatgctatigetttattigtaaccat
tataagctgeaataaacaagttaacaacaacaattgeattcatittatgiticaggttcaggggeaggtgtgagagotittttaaageaagt

aaaaccictacaaatgtggtatggctgattatgatctagagicgege  (SEQ ID NO. 5)

[0044] The Genbank accession number for the D. suzukii MYD88 sequence is GenBank:

Ki419649 1 (incorporated by reference herein}.

[0045]  'FThe Accession number for the D. suzukii genome sequence is

Dsuzuki.v0l [GCA 000472108 1] tincorporated by reference herein).

[0046]  The vector, along with a source of transposase, was injected into D. suzukii
embryos using standard injection procedures as described in The Use of P-Element
Transposons to Generate Transgenic Flies (Bachmann and Kust, Chapter 4) from Methods in
Molecular Biology: Drosophila: Methods and Protocols Edited by: C. Dahmann © Humana
Press Inc., Totowa, NJ, and the surviving GO adults were individually outcrossed to wild type
(WT) individuals. G1 progeny were screened for the presence of the Medea element (as
evidenced by ubiquitous dsRed expression), and one G1 transformant male was recovered.
When outcrossed to WT virgin females, the male produced 50% Medea+ and 50% WT
individuals (consistent with Mendelian transmission ratios). The Medea+ G2 progeny were
further individually outcrossed to WT individuals of the opposite sex. From these crosses, the
males (n=3) gave rise to ~50% Medea+ progeny; the females (n=9) gave rise to 100%
Medeat progeny, which is consistent with the Medea element functioning as a maternal
effect dominant embryonic arrest system. Of the G3 Medea+ progeny, nine males and 32
virgin females were further individually outcrossed to WT. The males have rise to 50%
Medea+:50% WT individuals, and male outcrosses were discontinued at this stage. The

females all gave rise to 100% Medea+ offspring (with a mean=9.34 G4 progeny recovered).
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[0047]  Fifty G4 heterozygous Medea+ virgin females were further individually outcrossed
to WT males, and all of their progeny (n=603) were Medea+. Thirty-one resulting G5
heterozygous Medea+ virgin females were then outcrossed further. In this outcross, a small
number of progeny that were negative for the Medea element were recovered for the first
time, indicating that the system did not function at 100%. Of the 31 G4 crosses that gave rise
to scorable progeny, eight G4 females produced a small number of Medea— offspring
(ranging from one to seven per female), while 23 gave rise to 100% Medea+ progeny.
Although a Medea system that works perfectly would be ideal, one that gives rise to mostly
Medea+ progeny would still be expected to spread through a population. In this case, of the
total G5 progeny, almost 97% (n=785) were Medea+, demonstrating that the system

functions very efficiently, if not ideally.

[0048]  Overall, when all generations were summed together, the percentage of Medea+
progeny arising from single heterozygous female outcrosses was nearly 99, with 1788

Medea+ progeny out of 1813 total (summarized in Table 1).

15



WO 2017/132207 PCT/US2017/014846
Table 1
Generation Sex {# crossed out} | Number of Progeny | % Medea
G2 Female {9) 126 100%
Male (3) 45 50%
G3 Female {32} 298 100%
Male {9) 130 50%
G4 Female {50} 603 100%
G5 Female {31} 785 97%
Total Medea+ from females 1788/1813 98%
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[0049]  To assess whether the Medea system would function well in geographically
distinct populations (which likely harbor genetic variability, especially in regions of the
genome that canonically have less conservation, such as the 5’UTR regions), heterozygous
Medea+ flies were individually introgressed with nine geographically distinct D. suzukii
populations, and resulting Medea+ heterozygous virgins were outcrossed to males from the
nine populations to determine whether the Medea element functioned appropriately.
Although the rate of inheritance was not 100% (as would be expected if the Medea element
functioned perfectly), it was an average of 96%, which is more than sufficient to bring about
gene drive (data summarized in Table 2 below). Therefore, the developed Medea system is a

gene drive tool for functioning globally, in diverse populations of the D). suzukii pest.
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Table 2
Strain origin # of progeny % Madea +
Clayton, WA 152 &8%
Watsonville, CA &2 100%
Brentwood, CA 251 Q4%
Ertime, Japan 133 100%
Oahu, Hi 167 99%
Reltsville, MD 100 88%
Organ 155 100%
Tracy, €A 283 2R%
Maryland 16 100%
Total 1319 56%
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Population cage experiments

[0050]  To determine whether the generated D. suzukii Medea is capable of spreading
through populations, population cage experiments were set up as follows. Heterozygous
Medea (Medea/+) males and WT (+/+) males were allowed to mate with WT (+/+) females in
proportions of 25 Medea/+ males: 25 +/+ males: 50 +/+ females (for an allele frequency of
~12.5%) and 30 Medea/+ males: 20 +/+ males: 50 +/+ females (for an allele frequency of
~15%). Additionally, heterozygous Medea (Medea/+) males were allowed to mate with WT
(+/+) females in proportions of 50 Medea/+ males: 50 +/+ females (for an allele frequency of
~25%), and homozygous Medea males (Medea/ Medea) were allowed to mate with WT (+/+)
females in proportions of 50 Medea/ Medea males: 50 +/+ females (for an allele frequency of
~50%). The total number of flies for each starting population was 100. After being placed
together, adult flies were removed after exactly seven days. After another seven days,
progeny were collected and separated in half arbitrarily. One half was counted, while the
other half was placed in a new bottle to continue the simulation, and this process continued
throughout the duration of the experiment. All experiments were conducted in triplicate. All
fly experiments were carried out at ~20°C with ambient humidity in 250 ml bottles

containing a fly medium prepared based on a recipe from USDS.

[0051]  These experiments are ongoing, however, when released at a higher threshold, the
D. suzukii Medea system does appear to demonstrate gene drive (drive experiments
continuing for several more generations should confirm these results). Given the observed
genetic behavior of the present Medea system, it is anticipated that the Medea element will

spread through the experimental populations in the predicted manner given sufficient time.

Theoretical framework

[0052]  Previous theoretical analyses have shown that Medea elements can spread when
introduced into the population at allele frequencies from 2.5% to 25%, depending on the
fitness cost (Ward et al. 2011; Marshall and Hay 2013), and population cage experiments in
D. melanogaster have practically shown Medea fixation with release frequencies of 25%
(Chen et al. 2007; Akbari et al. 2012). These numbers, while high, are relatively small
compared with those associated with classical sterile male release in other insects, e.g., up to

~10” in the case of Mediterranean fruit flies (Dyck et al. 2005).
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[0053] Mathematical analyses have also shown that Medea elements can be used for
purposes of population suppression. For example, Akbari et al. (2012) have demonstrated that
a Medea system comprising a lethality cassette that kills females upon some environmental
cue can be used to bring about population suppression by causing a cue-induced population

crash.

[0054]  Preliminary modeling as described herein has also indicated that a Medea element
can induce a population crash when inserted into a male or female recessive fertility gene. In
this scenario, heterozygous Medea-bearing individuals of one sex would be fertile, while
homozygous individuals of that sex would be recessively sterile. Numerous male and female
recessive fertility genes have been identified in D. melanogaster and are likely to be
conserved in D. suzukii. A Medea element could be inserted into such a gene to disrupt it
using a number of techniques, e.g., CRISPR-Cas9 homology directed repair (Mali et al.
2013). In this way, the Medea element would be inexorably linked to the mutation in the
fertility gene, and individuals possessing two copies of the Medea element would necessarily

be sterile.

Discussion

[0055] In brief, the engineered D. suzukii Medea element discussed here (and other similar
elements) allow for manipulation of wild D. suzukii populations in a number of ways.
Chiefly, such Medea elements enable the construction of a 1. suzukii strain that could be
released into the wild to suppress/eradicate the wild population of D. suzukii, by, for example,
eliminating the production of females or rendering females or males sterile. A primary appeal
of such an approach is that it is 100% insect specific, with only D. suzukii being targeted.
Another benefit of this approach is that it is catalytic: modest numbers of engineered insects
would need to be released into the wild population for the relevant transgenes to spread into
the population and cause a population crash. An important consequence of the fact that the
system relies on the engineered insects to do the work of suppression generation after
generation is that it is cheap, with only a few releases resulting in suppression of the species
on an ongoing basis, as compared to the use of insecticides, which need to be applied on a

regular basis.

[0056]  Although the system described here is based on the Myd88 gene, other Medea

systems targeting a variety of genes can be constructed (e.g., Akbari et al. 2012), and should

20



WO 2017/132207 PCT/US2017/014846

function in the same manner. Second-generation Medea systems that can counteract the
population suppression effects of the first system can also be generated, as discussed
elsewhere (Chen et al. 2007, Akbari et al. 2012). Additionally, Medea systems can be
developed using an RNA-guided endonuclease (instead of miRNAs) as the toxin designed to
maternally target the mRNA of a maternally deposited embryonic essential gene, preferably
in multiple places to reduce the generation of resistance alleles. And, Medea elements can
also be engineered in other species of interest. For example, a Medea system of the kind
described here can be generated in a number of fly pests related to Drosophila, such as in the
Caribbean fruit fly, Anastrepha suspensa, the Mexican fruit fly, Anastrepha ludens, the West
Indian fruit fly, Anastrepha oblique, the olive fruit fly, Bactrocera oleae/Dacus oleae, the

Mediterranean fruit fly, Ceratitis capitata, and other insect pests.
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[0057]  Although the present invention has been described in connection with the preferred
embodiments, it is to be understood that modifications and variations may be utilized without
departing from the principles and scope of the invention, as those skilled in the art will

readily understand. Accordingly, such modifications may be practiced within the scope of the

invention and the following claims.

[0058]  Use of the singular forms “a,” “an,” and “the” include plural references unless the

context clearly dictates otherwise.

[0059]  Unless defined otherwise or the context clearly dictates otherwise, all technical and
scientific terms used herein have the same meaning as commonly understood by one of

ordinary skill in the art to which this invention belongs.
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CLAIMS

What is claimed is:

1. A gene drive system for biocontrol of a Drosophila suzukii population, comprising

a first DNA sequence encoding a toxin under the control of a maternal germline-
specific promoter active in D. suzukii, and linked to

a second DNA sequence encoding an antidote under the control of an early
embryo-specific promoter active in D. suzukii,

wherein the toxin is expressed in D. suzukii maternal germline cells and results in
maternal-effect lethality in D. suzukii, and the antidote is expressed in D. suzukii embryos and

counters the maternal-effect lethality.

2. The gene drive system of claim 1, wherein the toxin comprises one or more miRNAs or

RNA-guided endonucleases, or a combination thereof.

3. The gene drive system of claim 1, wherein the toxin targets a gene for a D. suzukii

maternally-deposited embryonic-essential RNA or protein.
4. The gene drive system of claim 3, wherein the target gene is myd88.

5. The gene drive system of claim 3, wherein the antidote is a toxin-resistant version of the

target gene.

6. The gene drive system of claim 5, wherein the toxin-resistant version is not recognized

by the toxin.

7. The gene drive system of claim 1, wherein the maternal germline-specific promoter is a

bicoid promoter.

8. The gene drive system of claim 1, wherein the early embryo-specific promoter is a

bottleneck promoter

9. The gene drive system of claim 1, further comprising an effector genetic element active
in D. suzukii and linked to the first and second DNA sequences, wherein the effector genetic

element encodes a gene conferring susceptability to a chemical, a conditional lethal gene, a
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genetic element that disrupts a recessive fertility gene or recessive lethality gene, or a genetic

element that disrupts a gene involved in D. suzukii pest behavior.

10. Transgenic D. suzukii having a genome comprising the gene drive system of any one of

claims 1-9.

11. A method of manipulating a D. suzukii population, the method comprising releasing a
transgenic 1. suzukii having a genome comprising the gene drive system of claim 9 into the

population in sufficient numbers to spread the gene drive system through the population.

12. The method of claim 11, wherein the effector genetic element results in inducible
lethality in one or both sexes of D. suzukii or results in recessive sterility in one or both sexes

of D. suzukii.

13. A method of manipulating a D. suzukii population, the method comprising releasing the
transgenic 1. suzukii of claim 10 into the population in sufficient numbers to spread the gene

drive system through the population.

14. A gene drive system for biocontrol of a population of an insect, comprising

a first DNA sequence encoding a toxin under the control of a maternal germline-
specific promoter active in the insect, and linked to

a second DNA sequence encoding an antidote under the control of an early
embryo-specific promoter active in the insect,

wherein the toxin is expressed in maternal germline cells of the insect and results
in maternal-effect lethality in the insect, and the antidote is expressed in embryos of the insect
and counters the maternal-effect lethality, and

wherein the insect is not Drosophila melanogaster or a flour beetle.
15. The gene drive system of claim 14, wherein the toxin is an miRNA or an endonuclease.

16. The gene drive system of claim 14, wherein the toxin targets a gene for a maternally-

deposited embryonic-essential RNA or protein of the insect.
17. The gene drive system of claim 16, wherein the target gene is myd88.

18. The gene drive system of claim 16, wherein the antidote is a toxin-resistant version of

the target gene.
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19. The gene drive system of claim 18, wherein the toxin-resistant version is not recognized

by the toxin.

20. The gene drive system of claim 14, further comprising an effector genetic element active
in the insect and linked to the first and second DNA sequences, wherein the effector genetic
element encodes a gene conferring susceptibility to a chemical, a conditional lethal gene, a
genetic element that disrupts a recessive fertility gene or recessive lethality gene, or a genetic

element that disrupts a gene involved in insect pest behavior.

21. The gene drive system of claim 14, wherein the insect is Drosophila suzukii, Anastrepha
suspensa, Anastrepha ludens, Anastrepha oblique, Bactrocera oleae/Dacus oleae, Ceratitis

capitata, Aedes aegyptii, or Anopheles gambiae.

22. A transgenic insect whose genome comprises the gene drive system of any one of claims

14 -21.

23. A method of manipulating an insect population, the method comprising releasing the
transgenic insect of claim 22 into a population of the same species in sufficient numbers to

spread the gene drive system through the population.

24. A method of manipulating an insect population, the method comprising releasing a
transgenic insect having a gene drive system of claim 20 into a population of the same
species in sufficient numbers to spread the gene drive system through the population, wherein
the effector genetic element results in inducible lethality in one or both sexes of the species or

results in recessive sterility in one or both sexes of the species.
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