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Supplementary Figure 1. Crosses representing the inheritance pattern of an autosomal 
CRISPR-Cas9-based homing gene drive system. “H” denotes the CRISPR-Cas9-based 

homing construct, “h” denotes the corresponding wild-type allele, and “R” denotes a homing-

resistant allele. Inheritance of the H allele is favored in heterozygous parents as determined by 

the homing rate, e. Homing-resistant alleles may be generated during the process of DNA 

cleavage and repair at a rate, ρ. Crosses involving HH females are shaded out as HH females 

are rendered infertile by the homing construct. The inheritance pattern of the homing and 

resistant alleles depicted here is incorporated into the population dynamic model described in 

the Materials and Methods. 
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Supplementary Figure 2. Comparison of tolerable resistant allele generation rates for 
different mosquito population growth rates. (A-C) Elimination probability as a function of 

resistant allele generation rate for randomly mixing populations of size N and population growth 

rates of RM = 2 (A), 6 (B) and 12 per generation (C). Sigmoidal curves are fitted to data points 

covering 30 resistant allele generation rates sampled logarithmically between 10-2 and 10-8. (D-

F) Linear relationship between 1/N and the resistant allele generation rate leading to a given 

probability of population elimination for population growth rates of RM = 2 (D), 6 (E) and 12 per 

generation (F). Values of 1/N are as shown in panel A-C, and resistant allele generation rates 

are inferred from the sigmoid curves. Faint lines in all panels represent interpolation between 

simulated data points while solid lines represent fitted linear relationships. The linear 

relationship between 1/N and the resistant allele generation rate leading to a given elimination 

probability holds for low (2 per generation), medium (6 per generation) and high (12 per 

generation) growth rates; however the slopes vary. 
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Supplementary Figure 3. Comparison of tolerable resistant allele generation rates with 
and without population structure. (A) Elimination probability as a function of resistant allele 

generation rate for randomly mixing populations of size, N, between 10,000 and 50,000. 

Sigmoidal curves are fitted to data points covering 30 resistant allele generation rates sampled 

logarithmically between 10-2 and 10-7. (B) Linear relationship between 1/N and the resistant 

allele generation rate leading to a given probability of population elimination. Values of 1/N are 

as shown in panel A, and resistant allele generation rates are inferred from the sigmoid curves. 

(C) Elimination probability as a function of resistant allele generation rate for 1-5 randomly 

mixing populations, each of size 10,000, which exchange migrants with all other populations at 

a rate of 1% per adult mosquito per generation. (D) Linear relationship between 1/N and the 

resistant allele generation rate leading to a given probability of elimination, where N is the 

collective population size. Faint lines in all panels represent interpolation between simulated 

data points while solid lines represent fitted linear relationships. The linear relationship between 
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1/N and the resistant allele generation rate leading to a given elimination probability is 

unchanged by the presence of population structure, at least for the case explored here. 
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Supplementary Figure 4. Distance of multiplexed gRNA target sites may affect homing 
rates. We hypothesize that if a suppression based gene drive is designed to target an essential 

gene at two target sites that are far apart from each other, then four drive-induced possibilities 

may occur. These include, the drive being successfully copied over to the target allele via HDR 

following cleavage at both target sites (A), cleavage at both target sites and repair via NHEJ 

resulting in a mutated drive-resistant essential allele (B), or one of the target sites fails to get 

cleaved while the other gets cleaved and repaired via NHEJ generating a mutated essential 

gene (C,D). However, if the drive is designed to target an essential gene at two target sites that 

are relatively close to each other, but not too close to prevent Cas9 from generating mutations 

in adjacent target sites, then four different drive-induced possibilities may occur. These include, 

the drive being successfully copied over to the target allele via HDR following cleavage at both 

target sites (E), cleavage at both target sites and repair via NHEJ resulting in a mutated drive-

resistant essential allele (F), or one of the target sites fails to get cleaved while the other gets 

cleaved and repaired via NHEJ generating either a mutated essential gene or a functional drive 

(G,H). Note – for all examples the mutated essential gene may or may not still be functional, 

however it should be resistant to the endonuclease in the drive due to the mutated gRNA target 

site.  
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Supplementary Text S1: 
 
Model equations for CRISPR-Cas9-based population dynamics in Anopheles gambiae: 
In the main text we describe a stochastic framework for modeling the spread of a CRISPR-

Cas9-based gene drive system targeting a female fertility gene through a randomly mating 

population; however equations were left out for brevity. These are included here for 

completeness. 

 

Using An. gambiae as a case study, we adapt the modeling framework of Deredec et al. (2011) 

to describe the spread of the CRISPR and homing-resistant alleles through a discrete, density-

dependent population with time steps of one day. In this model, the mosquito life cycle is divided 

into four life stages – egg, larva, pupa and adult (both male and female) – denoted by the 

subscripts “E”, “L”, “P” and “M”, respectively. The daily, density-independent mortality rates for 

the juvenile stages are assumed to be identical (µE = µL = µP ) and are chosen for consistency 

with the population growth rate in the absence of density-dependent mortality, RM. The duration 

of these stages differ and are given by TE, TL and TP. The probability of surviving any of the 

juvenile stages in a density-independent setting is given by θi = (1−µi )
Ti , where i ∈{E,L,P} ; 

however additional density-dependent mortality, 1− F (L) , occurs at the larval stage. We use a 

density-dependent equation of the form, F (L) = α / (α + L)TL , where α is a parameter 

influencing the strength of density-dependence and is chosen to produce the desired equilibrium 

density of adult mosquitoes in the population. For adult mosquitoes, the mortality rate is denoted 

by µM . Fecundity rates are allowed to differ, with wild-type females laying βhh = β  eggs per 

day, heterozygous females (Hh and HR) laying βHh = βHR = β(1− s)  eggs per day, HH females 

being infertile ( βHH = 0 ), and females of other genotypes (hR and RR)
 
laying βhR = βRR = β  

eggs per day. Here, s represents the fractional reduction in fertility of females heterozygous for 

the homing allele. Initial estimates for these and other parameter values are provided in 

Supplementary Table 1. 

 

With this framework in place, the dynamics of the population can be described by equations for 

the number of larvae and adults belonging to each genotype at time t. The number of larvae is 

needed to determine the strength of density-dependence. Since HH female infertility is irrelevant 
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at the larval stage, we describe the total larval population size at time t as, 

 

 

Lt = Lt−1(1−µL )F (Lt−1)+ βxMt−TE

x ,y θE( )
x ,y∈{HH ,Hh,
HR,hh,hR,RR}

∑

− β xMt−TE−TL

x ,y θEθL F (Lt−i )i=1

TL∏( )
x ,y∈{HH ,Hh,
HR,hh,hR,RR}

∑
.     (S1) 

 

Here, the first term accounts for survival of larvae (denoted at time t by Lt) from one day to the 

next, the second term accounts for newly hatching eggs of any genotype from females of any 

genotype x that have mated with males of any genotype y (denoted at time t by Mt
x ,y ), and the 

third term accounts for transformation of larvae into pupae for juvenile stages resulting from the 

same crosses. 

 

Adult males and females are treated slightly differently in this framework since it is assumed that 

female mosquitoes only mate once, while male mosquitoes may mate throughout their lifetime. 

For example, the number of male adults of genotype HH at time t is given by, 

 

Mt
HH =Mt−1

HH (1−µM )

+
1
2

EHh,HH
HH + EHh,Hh

HH + EHh,HR
HH

+EHR,HH
HH + EHR,Hh

HH + EHR,HR
HH

"

#

$
$

%

&

'
'
θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏
.   (S2) 

 

Here, the first term accounts for survival of HH adult males (denoted at time t by Mt
HH ) from 

one day to the next, and the second term accounts for transformation of HH pupae into adult 

males, where these pupae result from crosses between Hh and HR females with HH, Hh and 

HR males. The number of eggs of genotype x produced by adult females of genotype y that 

have mated with a male of genotype z is given by Ey ,z
x . These quantities are time-dependent 

and the product of the fecundity of the female genotype, β y , the number of females having the 

given mated genotype, M y ,z , and the proportion of offspring of this mated genotype having the 

genotype z (depicted in the crosses shown in Supplementary Figure 1). The numbers of HH 

eggs from each cross in Equation S2 are given by the following equations: 
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Crosses involving HH females are not included here, as these females are rendered infertile by 

the CRISPR construct. 

 

Females, on the other hand, are assumed to mate only once and on the same day that they 

emerge. They can therefore be described by both their genotype and the genotype of the male 

with whom they mated. For example, the number of female adults at time t of genotype HH that 

have mated with hh males is given by, 

 

Mt
HH ,hh =Mt−1

HH ,hh (1−µM )
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 .   (S9) 

 

Here, the first term accounts for survival of HH adult females that have mated with hh males 

(denoted at time t by Mt
HH ,hh ) from one day to the next, and the second term accounts for 

transformation of HH pupae into adult females, where these pupae result from crosses between 

Hh and HR females with HH, Hh and HR males. This term is multiplied by the fraction of the 

adult male population having the genotype hh. Equations for all other adult genotypes are 

treated analogously as follows. 
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Equation S2 describes the number of adult males of genotype HH over time. There are five 

other male genotypes – Hh, HR, hh, hR and RR – denoted by the variables HH
tM , Hh

tM , HR
tM , 

hh
tM , hR

tM  and RR
tM  respectively, and described by the following equations: 
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Here, the first term accounts for adult survival for each genotype from one day to the next, and 

the second term accounts for transformation of pupae into adult males for each genotype, 

where pupae result from the crosses depicted in Supplementary Figure 1. The number of eggs 

of genotype x produced by adult females of genotype y that have mated with a male of 

genotype z is given by Ey ,z
x . These quantities are the product of the fecundity of the female 

genotype, β y , the number of females having the given mated genotype, M y ,z , and the 

proportion of offspring of this mated genotype having the genotype z. The numbers of eggs of 

all genotypes for each of the crosses depicted in Supplementary Figure 1 are given by the 

following equations: 

 

Eggs produced by Hh females: 
 

(EHh,HH
HH ,EHh,HH

Hh ,EHh,HH
HR ) = β(1− s)Mt−TE−TL−TP

Hh,HH 1+ e
2
,1− e− ρ

2
, ρ
2

"

#
$

%

&
'  ,    (S15) 

EHh,Hh
HH ,EHh,Hh

Hh ,EHh,Hh
HR ,

EHh,Hh
hh ,EHh,Hh

hR ,EHh,Hh
RR

!

"

#
#

$

%

&
&
= β(1− s)Mt−TE−TL−TP

Hh,Hh

(1+ e)2

4
, (1+ e)(1− e− ρ)

2
, (1+ e)ρ

2
,

(1− e− ρ)2

4
, (1− e− ρ)ρ

2
, ρ

2

4

!

"

#
#
#
#

$

%

&
&
&
&

 , (S16) 

EHh,HR
HH ,EHh,HR

Hh ,EHh,HR
HR ,

EHh,HR
hR ,EHh,HR

RR

!

"

#
#

$

%

&
&
= β(1− s)Mt−TE−TL−TP

Hh,HR

(1+ e)
4

, (1− e− ρ)
4

, (1+ e)+ ρ
4

,

(1− e− ρ)
4

, ρ
4

!

"

#
#
#
#

$

%

&
&
&
&

 ,  (S17) 

(EHh,hh
Hh ,EHh,hh

hh ,EHh,hh
hR ) = β(1− s)Mt−TE−TL−TP

Hh,hh 1+ e
2
,1− e− ρ

2
, ρ
2

"

#
$

%

&
'  ,    (S18) 

EHh,hR
Hh ,EHh,hR

HR ,EHh,hR
hh ,

EHh,hR
hR ,EHh,hR

RR

!

"

#
#

$

%

&
&
= β(1− s)Mt−TE−TL−TP

Hh,hR

(1+ e)
4

, (1+ e)
4

, (1− e− ρ)
4

,

(1− e− ρ)+ ρ
4

, ρ
4

!

"

#
#
#
#

$

%

&
&
&
&

 ,   (S19) 

(EHh,RR
HR ,EHh,RR

hR ,EHh,RR
RR ) = β(1− s)Mt−TE−TL−TP

Hh,RR 1+ e
2
,1− e− ρ

2
, ρ
2

"

#
$

%

&
'  .    (S20) 

 
Eggs produced by HR females: 
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Eggs produced by hh females: 
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Eggs produced by hR females: 
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Eggs produced by RR females: 
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As mentioned earlier, crosses involving HH females are not included here, as these females are 

rendered infertile by the CRISPR construct. 

 

Females are assumed to mate only once and on the same day that they emerge so can 

therefore be described by both their genotype and the genotype of the male with whom they 

mated. Equation S9 describes the number of female adults of genotype HH that have mated 

with hh males over time. The other mated female genotypes are described by the following 

equations: 
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Hh,HR ,Mt−1

Hh,hh ,Mt−1
Hh,hR ,Mt−1

Hh,RR )(1−µM )

+
1
2

EHh,HH
Hh + EHh,Hh

Hh + EHh,HR
Hh + EHh,hh

Hh

+EHh,hR
Hh + EHR,Hh

Hh + EHR,hh
Hh + EHR,hR

Hh

+Ehh,HH
Hh + Ehh,Hh

Hh + Ehh,HR
Hh + EhR,HH

Hh

+EhR,Hh
Hh + EhR,HR

Hh

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏

×
(Mt−1

HH ,Mt−1
Hh ,Mt−1

HR ,Mt−1
hh ,Mt−1

hR ,Mt−1
RR )

Mt−1
HH +Mt−1

Hh +Mt−1
HR +Mt−1

hh +Mt−1
hR +Mt−1

RR

 ,  (S46) 

 

(Mt
HR,HH ,Mt

HR,Hh ,Mt
HR,HR ,Mt

HR,hh ,Mt
HR,hR ,Mt

HR,RR )

= (Mt−1
HR,HH ,Mt−1

HR,Hh ,Mt−1
HR,HR ,Mt−1

HR,hh ,Mt−1
HR,hR ,Mt−1

HR,RR )(1−µM )

+
1
2

EHh,HH
HR + EHh,Hh

HR + EHh,HR
HR + EHh,hR

HR

+EHh,RR
HR + EHR,HH

HR + EHR,Hh
HR + EHR,HR

HR

+EHR,hR
HR + EHR,RR

HR + EhR,HH
HR + EhR,Hh

HR

+EhR,HR
HR + ERR,HH

HR + ERR,Hh
HR + ERR,HR

HR

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏

×
(Mt−1

HH ,Mt−1
Hh ,Mt−1

HR ,Mt−1
hh ,Mt−1

hR ,Mt−1
RR )

Mt−1
HH +Mt−1

Hh +Mt−1
HR +Mt−1

hh +Mt−1
hR +Mt−1

RR

 ,  (S47) 

(Mt
hh,HH ,Mt

hh,Hh ,Mt
hh,HR ,Mt

hh,hh ,Mt
hh,hR ,Mt

hh,RR )

= (Mt−1
hh,HH ,Mt−1

hh,Hh ,Mt−1
hh,HR ,Mt−1

hh,hh ,Mt−1
hh,hR ,Mt−1

hh,RR )(1−µM )

+
1
2

EHh,Hh
hh + EHh,hh

hh + EHh,hR
hh + Ehh,Hh

hh + Ehh,hh
hh

+Ehh,hR
hh + EhR,Hh

hh + EhR,hh
hh + EhR,hR

hh

!

"

#
#

$

%

&
&
θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏

×
(Mt−1

HH ,Mt−1
Hh ,Mt−1

HR ,Mt−1
hh ,Mt−1

hR ,Mt−1
RR )

Mt−1
HH +Mt−1

Hh +Mt−1
HR +Mt−1

hh +Mt−1
hR +Mt−1

RR

 ,  (S48) 
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(Mt
hR,HH ,Mt

hR,Hh ,Mt
hR,HR ,Mt

hR,hh ,Mt
hR,hR ,Mt

hR,RR )

= (Mt−1
hR,HH ,Mt−1

hR,Hh ,Mt−1
hR,HR ,Mt−1

hR,hh ,Mt−1
hR,hR ,Mt−1

hR,RR )(1−µM )

+
1
2

EHh,Hh
hR + EHh,HR

hR + EHh,hh
hR + EHh,hR

hR + EHh,RR
hR

+EHR,Hh
hR + EHR,hh

hR + EHR,hR
hR + Ehh,Hh

hR + Ehh,HR
hR

+Ehh,hR
hR + Ehh,RR

hR + EhR,Hh
hR + EhR,HR

hR + EhR,hh
hR

+EhR,hR
hR + EhR,RR

hR + ERR,Hh
hR + ERR,hh

hR + ERR,hR
hR

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏

×
(Mt−1

HH ,Mt−1
Hh ,Mt−1

HR ,Mt−1
hh ,Mt−1

hR ,Mt−1
RR )

Mt−1
HH +Mt−1

Hh +Mt−1
HR +Mt−1

hh +Mt−1
hR +Mt−1

RR

 , (S49) 

 

(Mt
RR,HH ,Mt

RR,Hh ,Mt
RR,HR ,Mt

RR,hh ,Mt
RR,hR ,Mt

RR,RR )

= (Mt−1
RR,HH ,Mt−1

RR,Hh ,Mt−1
RR,HR ,Mt−1

RR,hh ,Mt−1
RR,hR ,Mt−1

RR,RR )(1−µM )

+
1
2

EHh,Hh
RR + EHh,HR

RR + EHh,hR
RR + EHh,RR

RR + EHR,Hh
RR

+EHR,HR
RR + EHR,hR

RR + EHR,RR
RR + EhR,Hh

RR + EhR,HR
RR

+EhR,hR
RR + EhR,RR

RR + ERR,Hh
RR + ERR,HR

RR + ERR,hR
RR

+ERR,RR
RR

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

θEθL F (Lt−i−TP )θP (1−µM )i=1

TL∏

×
(Mt−1

HH ,Mt−1
Hh ,Mt−1

HR ,Mt−1
hh ,Mt−1

hR ,Mt−1
RR )

Mt−1
HH +Mt−1

Hh +Mt−1
HR +Mt−1

hh +Mt−1
hR +Mt−1

RR

 . (S50) 

 

For each of these equations, the first term accounts for survival of adult females having the 

given mated genotype from one day to the next, and the second term accounts for 

transformation of pupae of the given female genotype into adults. The second term is then 

multiplied by the fraction of the adult male population having either genotype HH, Hh, HR, hh, 

hR or RR, depending on the female mated genotype. 

 

Using these equations, we can derive several basic properties of the population, such as the 

non-zero equilibrium densities of larvae and adults, and the generational or daily mosquito 

population growth rate in the absence of genetic control. The generational population growth 

rate, RM, is equal to the rate of female egg production multiplied by the life expectancy of an 

adult mosquito multiplied by the proportion of eggs that will survive through all of the juvenile life 

stages in the absence of density-dependence. This is given by, 

 

RM =
βθEθLθP (1−µM )

2µM  
.        (S51) 
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Substituting formulae for the survival probabilities of the juvenile life stages, we have, 

 

RM =
β(1−µL )

TE+TL+TP (1−µM )
2µM

 .         (S52) 

 

And rearranging the formula to express the mortality rates for the juvenile stages as a function 

of the per-generation mosquito population growth rate, we have, 

 

µL =1−
2RMµM
β(1−µM )

"

#
$$

%

&
''

1/(TE+TL+TP )

 .         (S53) 

 

Following Deredec et al. (2011), we estimate the daily population growth rate of An. gambiae to 

be 1.096 per day, based on the average rate of population growth at the beginning of three wet 

seasons in the village of Kwaru, Nigeria, measured as part of the Garki Project (Molineaux & 

Gramiccia, 1980). Calculating the generation time of An. gambiae as TE + TL + TP + 1/μM = 24.1 

days, this corresponds to a population growth rate of 1.09624.1 = 9.1 per generation. We adopt 

this value of the population growth rate for the majority of our simulations; but consider values of 

RM = 2, 6 and 12 per generation to represent low, medium and high growth rates. In each case, 

the corresponding value of μL is calculated according to Equation S53 and the parameter values 

in Table S1. 

 

The equilibrium population densities can then be calculated by setting the population densities 

to be equal across generations in Equations S1, S12, S30 and S48. This leads to the following 

non-zero equilibria: 

 

Leq =α(RM −1) ,         (S54) 

N =
2
βθE

1− θL / RM
TL

1− (θL / RM )

!

"

#
#

$

%

&
&
α(RM −1) .       (S55) 

 

Here, eqL  and N  represent the total population equilibria (i.e. hh
eq eqL L=  and N =Meq

hh +Meq
hh,hh ). 



17 
 

These formulations guide the parameter choices, taken from Deredec et al. (2011), as shown in 

Table S1: 

 

Table S1: Parameter values for stochastic, discrete-time model. 
Symbol: Parameter: Value: References: 

Primary parameters: 

β Egg production per wild-type female 32 /day Depinay et al. (2004) 

TE
 Duration of egg stage 1 day Depinay et al. (2004) 

TL
 Duration of larval stage 14 days Depinay et al. (2004) 

TP
 Duration of pupal stage 1 day Depinay et al. (2004) 

µM  Death rate of adult stage 0.123 /day Molineaux & Gramiccia 

(1980) 

Variable parameters: 

RM
 Per-generation mosquito population 

growth rate 

RM = 2, 6, 9.1, 

12 

Molineaux & Gramiccia 

(1980) 

e Homing rate 0.97 < e < 

0.9999 

Hammond et al. (2016) 

ρ Resistant allele generation rate 10-8 < ρ < 10-2 Hammond et al. (2016) 

s Fertility cost to Hh females s = 0, 0.907 Hammond et al. (2016) 

N Equilibrium adult mosquito 

population size (male and female) 

103 < N < 1010  

  

Modeling gRNA multiplexing: 
The results depicted in Figure 3 in the main text suggest that the probability of population 

elimination is independent of the homing rate for e > 98%, but is highly dependent on the 

resistant allele generation rate, ρ. We propose gRNA multiplexing as a method to reduce the 

effective resistant allele generation rate and, here, describe how the effective resistant allele 

generation rate varies with multiplex number.  
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Multiplex number of two: 

For the example of two multiplexed gRNAs, there are two sites within a composite allele at 

which the gRNAs cleave, both of which may either have the homing construct, H, be resistant to 

homing, R, or be wild-type, h. We denote the composite allele as {xy}, where x denotes the first 

site in the composite allele, y denotes the second side in the composite allele, and 

x, y ∈{H ,R,h} . 

 

As multiplexing provides multiple opportunities for homing to occur, we consider a composite 

allele to have the homing phenotype (the ability to cleave and home into the homologous 

chromosome at multiple target sites) if at least one of its sites has a functional copy of the 

homing allele (i.e. the composite alleles {HH}, {Hh} and {HR}). We consider a composite allele to 

have the homing-resistant phenotype if all of its sites have a homing-resistant allele (i.e. the 

composite allele {RR}). All other composite alleles are considered to have the wild-type 

phenotype, i.e. they don’t have the homing phenotype but are still potentially receptive to a 

homing event. For the two-gRNA system, the effective resistant allele generation rate, ρm=2, is 

then given by, 

 

ρm=2 =
P{hh}

P{hh}+ P{hR}
ρ2 +

P{hR}
P{hh}+ P{hR}

ρ  .     (S56) 

 

Here, P{hh} and P{hR} represent the proportion of composite alleles that are {hh} and {hR}, 

respectively, ρ2 is the probability of generating a {RR} composite allele from a {hh} composite 

allele when the composite allele on the opposite chromosome has at least one functional copy 

of the homing allele, and ρ is the probability of generating an {RR} allele from an {hR} allele 

under the same circumstances. 

 

The relative proportion of {hh} and {hR} composite alleles can be estimated by considering the 

flux of composite alleles as they become associated with composite alleles on the opposite 

chromosome having the homing phenotype. For the two-gRNA system, the flux of {hR} 

composite alleles is given by, 

 

dP{hR}
dt

= 2cρ(1− e− ρ)P{hh}− c(e+ ρ)P{hR}  .     (S57) 
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Here, c represents the rate at which a given chromosome becomes associated with an opposite 

chromosome having the homing phenotype. The rate of change of the proportion of 

chromosomes having the {hR} composite allele is equal to the rate at which {hR} composite 

alleles are generated from {hh} alleles (i.e. through resistant allele generation at one site and 

wild-type allele maintenance at the other site) subtracting the rate at which {hR} composite 

alleles are lost through either homing or resistant allele generation at the remaining wild-type 

site. 

 

Allele frequencies are constantly in flux as a gene drive system spreads into a population; 

however, if we assume, to a first approximation, that equilibrium is maintained between {hh} and 

{hR} composite alleles for a given prevalence of composite alleles having the homing 

phenotype, then the equilibrium solution to Equation S57 suggests the following ratio of {hR} to 

{hh} composite alleles: 

 

P{hR}
P{hh}

=
2ρ(1− e− ρ)
e+ ρ

 .        (S58) 

 

Substituting this ratio into Equation S56, the effective resistant allele generation rate for two 

multiplexed gRNAs, ρm=2, is given by, 

 

ρm=2 = ρ
2 2− e− ρ
e+ ρ + 2ρ(1− e− ρ)

 .       (S59) 

 

Substituting our homing efficiency of 98% and resistant allele generation rate of 0.13% into 

Equation S59, we see that the effective resistant allele generation rate for a multiplex number of 

two is equal to ρ2 multiplied by a fraction very close to 1 (1.038). I.e. for the circumstances being 

studied, 

 

ρm=2 ≈ ρ
2  .          (S60) 

 

This is a consequence of most resistant allele generation occurring directly from {hh} composite 

alleles, since {hR} composite alleles are rarely generated and are frequently converted to alleles 

having the homing phenotype once they have been formed. 
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Multiplex number of three: 

To check whether the same approximation holds for three multiplexed gRNAs, i.e. that most 

resistant allele generation occurs directly from {hhh} composite alleles, we calculate the 

effective resistant allele generation rate using the same framework as described above. We 

denote the composite allele in this case as {xyz}, where x, y, z ∈{H ,R,h}. As multiplexing 

provides multiple opportunities for homing to occur, a composite allele is considered to have the 

homing phenotype if at least on of its sites has a functional copy of the homing allele, a 

composite allele is considered to have the homing-resistant phenotype if all of its sites have a 

homing-resistant allele, and all other composite alleles have the wild-type phenotype. 

 

For the three-gRNA system, the effective resistant allele generation rate, ρm=3, is given by, 

 

ρm=3 =
P{hhh}ρ3 + P{hhR}ρ2 + P{hRR}ρ
P{hhh}+ P{hhR}+ P{hRR}

 .      (S61) 

 

Here, P{hhh}, P{hhR} and P{hRR} represent the proportion of composite alleles that are {hhh}, 

{hhR} and {hRR}, respectively, and ρ3, ρ2 and ρ are the probabilities of generating an {RRR} 

composite allele from an {hhh}, {hhR} and {hRR} composite allele, respectively, when the 

corresponding allele has at least one functional copy of the homing allele.  

 

As for the two-gRNA case, the relative proportion of {hhh}, {hhR} and {hRR} composite alleles 

can be estimated by considering the relative flux of allele genotypes as they become associated 

with corresponding composite alleles having the homing phenotype. For the three-gRNA 

system, the flux of the {hhR} composite alleles is given by, 

 

 dP{hhR}
dt

= 3cρ(1− e− ρ)2P{hhh}− c(1− (1− e+ ρ)2 )P{hhR} .   (S62) 

 

Here, the rate of change of the proportion of chromosomes having the {hhR} composite allele is 

equal to the rate at which {hhR} composite alleles are generated from {hhh} composite alleles 

(i.e. through resistant allele formation at one site and wild-type allele maintenance at the other 

two sites) subtracting the rate at which {hhR} composite alleles are lost through either homing or 

resistant allele generation at the remaining two wild-type sites. Assuming, to a first 
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approximation, that equilibrium is maintained between {hhh} and {hhR} composite alleles for a 

given prevalence of composite alleles having the homing phenotype, then the equilibrium 

solution to Equation S62 suggests the following ratio of {hhR} to {hhh} composite alleles: 

 

P{hhR}
P{hhh}

=
3ρ(1− e− ρ)2

1− (1− e− ρ)2
 .        (S63) 

 

Similarly, the flux of {hRR} composite alleles is given by, 

 

dP{hRR}
dt

= 3cρ2 (1− e− ρ)P{hhh}+ 2cρ(1− e+ ρ)P{hhR}− c(e+ ρ)P{hRR}  . (S64) 

 

Here, the rate of change of the proportion of chromosomes having the {hRR} composite allele is 

equal to the rate at which {hRR} composite alleles are generated from {hhh} composite alleles 

(i.e. through resistant allele formation at two sites and wild-type allele maintenance at the other 

site) added to the rate at which {hRR} composite alleles are generated from {hhR} composite 

alleles (i.e. through resistant allele formation at one site and wild-type allele maintenance at the 

other site) subtracting the rate at which {hRR} composite alleles are lost through either homing 

or resistant allele generation at the remaining wild-type site. Substituting Equation S63 into 

Equation S64 and assuming, to a first approximation, that equilibrium is maintained between 

{hhh} and {hRR} alleles for a given prevalence of composite alleles having the homing 

phenotype, then the equilibrium solution to Equation S64 suggests the following ratio of {hRR} 

to {hhh} composite alleles: 

 

P{hRR}
P{hhh}

=
3ρ2 (1− e− ρ)(2+ e2 − 2e(1− ρ)− ρ(2− ρ))

(2− e− ρ)(e+ ρ)2
.    (S65) 

 

Substituting the ratios in Equations S63 and S65 into Equation S61, the effective resistant allele 

generation rate for three multiplexed gRNAs, ρm=3, is given by, 

 

ρm=3 = ρ
3 (2− e− ρ)(3+ e2 − ρ(3− ρ)− e(3− 2ρ))
e2 (2−9ρ(1− ρ)2 )− e3(1−3ρ(1− ρ))
+ρ2 (11− ρ(19−3ρ(4− ρ)))+ ρe(7−9ρ(3− ρ(3− ρ)))

"

#
$$

%

&
''

 .   (S66) 
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Substituting our homing efficiency of 98% and resistant allele generation rate of 0.13% into 

Equation S66, we see that the effective resistant allele generation rate for a multiplex number of 

three is equal to ρ3 multiplied by a fraction very close to 1 (1.058). I.e. for the circumstances 

being studied, 

 

ρm=3 ≈ ρ
3 .          (S67) 

 

This is a consequence of most resistant allele generation occurring directly from {hhh} 

composite alleles, since {hhR} and {hRR} composite alleles are rarely generated and are 

frequently converted to composite alleles having the homing phenotype once they have been 

formed. We have reason to believe this trend will continue for higher multiplex numbers for the 

parameter ranges we are exploring here. Therefore, for the purposes of this paper, we will 

approximate the effective resistant allele generation rate for a multiplex number of m as ρm. 

 

Multiplex number of two (reduced homing rate for second gRNA): 

In the above calculations, we have ignored the reduced cleavage rate observed for the RGR 

multiplexing approach in D. melanogaster for the second gRNA. If we assume a fractional 

reduction in cleavage rate, f, and that this will reduce both the homing and resistant allele 

generation rates by the same amount for the second gRNA, then we can derive how this effects 

the effective resistant allele generation rate by modifying the previous analysis for two 

multiplexed gRNAs. We will now consider ordered composite alleles, where {hR} represents a 

composite allele with a wild-type allele at the first site and a homing-resistant allele at the 

second site, and {Rh} represents a composite allele with a homing-resistant allele at the first site 

and a wild-type allele at the second site. For the two-gRNA system, the effective resistant allele 

generation rate, ρm=2, is now given by, 

 

ρm=2 =
P{hh} f ρ2 + P{Rh} f ρ + P{hR}ρ

P{hh}+ P{Rh}+ P{hR}
 .      (S68) 

 

Here, fρ2 is the probability of generating a {RR} composite allele from a {hh} composite allele 

when the composite allele on the opposite chromosome has at least one functional copy of the 

homing allele, ρ is the probability of generating a {RR} composite allele from a {hR} composite 

allele under the same circumstances, and fρ is the probability of generating a {RR} composite 

allele from a {Rh} composite allele, where the reduction is due to the reduced cleavage rate at 
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the second site. 

 

The relative proportions of {hh}, {Rh} and {hR} composite alleles can be estimated by 

considering the flux of composite alleles as they become associated with composite alleles on 

the opposite chromosome having the homing phenotype. For the two-gRNA system with 

reduced cleavage rate at site two, these are given by, 

 

dP{Rh}
dt

= cρ(1− f (e+ ρ))P{hh}− cf (e+ ρ)P{Rh}  .     (S69) 

dP{hR}
dt

= cf ρ(1− e− ρ)P{hh}− c(e+ ρ)P{hR}  .     (S70) 

  

Here, {Rh} composite alleles are generated at a faster rate due to the higher likelihood that the 

second site will remain wild-type, and {hR} composite alleles are generated at a slower rate due 

to the smaller likelihood that cleavage and hence resistant alleles will occur at the second site. 

{Rh} composite alleles are also lost at a slower rate due to homing and resistant allele 

generation occurring at a slower rate at the second site. 

 

If we assume, to a first approximation, that equilibrium is maintained between {hh}, {Rh} and 

{hR} composite alleles for a given prevalence of composite alleles having the homing 

phenotype, then the equilibrium solution to Equations S69-S70 suggests the following ratio of 

{Rh} and {hR} to {hh} composite alleles: 

 

P{Rh}
P{hh}

=
ρ(1− f (e+ ρ))
f (e+ ρ)

 .        (S71) 

P{hR}
P{hh}

=
f ρ(1− e− ρ)
e+ ρ

 .        (S72) 

 

Substituting these ratios into Equation S68, the effective resistant allele generation rate for two 

multiplexed gRNAs, ρm=2, with reduced cleavage at site two is given by, 

 

ρm=2 = f ρ
2 1+ f (1− e− ρ)
ρ + f (ρ(1+ f )(1− ρ)+ e(1− ρ(1+ f )))

 .     (S73) 

 

Substituting our homing efficiency of 98% and baseline ρ value of 0.13% into Equation S73, we 
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see that, for a reduced cleavage rate of 75% at site two, the effective resistant allele generation 

rate is equal to ρ2 multiplied by 1.033, and for a reduced cleavage rate of 50% at site two, the 

effective resistant allele generation rate is ρ2 multiplied by a 1.027. In fact, even for a drastically 

reduced cleavage rate of 25% at site two, the effective resistant allele generation rate is still 

approximately ρ2 (ρ2 multiplied by a 1.020). Thus, interestingly, a reduction in cleavage rate at 

site two doesn’t significantly alter the effective resistant allele generation rate, and in fact slightly 

reduces the rate as compared to that without a reduced cleavage rate at the second site (which 

was ρ2 multiplied by 1.038). 

 

Table S2: Primer sequences Sequences 
Primer name Primer sequence, 5’ to 3’ Source 

OA16-1 
 
 
OA16-2 
 

TAGCGGATCCGGGAATTGGGAATTGGGCAATATTTAAATGGCG
GCCGCGCGCAGATCGCCGATG 
 
TTCGTCCTCACGGGACTCATCAGGGCGATGGCGCGCCTCTGC
GGGTCAAAATAGAGATGT 

Drosophila genomic 
DNA 

OA16-3 
 
 
OA16-4 

TCGGCATGGCGAATGGGACAGATCTTTGTGAAGGAACCTTACT
TCTGTG 
 
GGATCTCTAGAGGTACCGTTGCGGCCGAATTCTTAATTAATGG
AACCAGACATGATAAGA 

pMos-3xP3-DsRed-
attp (addgene 
plasmid #52904) 

OA16-5 
 
 
 
OA16-6 
 
 
 
OA16-7 

CTATTTTGACCCGCAGAGGCGCGCCATCGCCCTGATGAGTCC
CGTGAGGACGAAACGAGTAAGCTCGTCGGCGATACTTGGATG
CCCTGGTTTTAGAGCTAGAAATAGCAAGTTAA  
 
TGTTGCCCAGCCGGCGCCAGCGAGGAGGCTGGGACCATGCC
GGCCAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAAC
GGACTAGCCTTATTTTAACTTGCTATTTCTA 
 
ATCAGGGTTTTTGTCCCATTCGCCATGCCGAAGCATGTTGCCC
AGCCGGCGCCAGCGAGG 

Self annealing 
primers 

OA16-8 
 
 
 
OA16-9 
 
 
 
OA16-10 
 

CTATTTTGACCCGCAGAGGCGCGCCATCGCCCTGATGAGTCC
CGTGAGGACGAAACGAGTAAGCTCGTCGGCGATACTTGGATG
CCCTGGTTTTAGAGCTAGAAATAGCAAGTTAA  
 
CGGCATGGCGAATGGGACAAAAACCCTGATGAGTCCCGTGAG
GACGAAACGAGTAAGCTCGTCGGTTTTGGACACTGGAACCGG
TTTTAGAGCTAGAAATAGCAAGTTAA 
 
GGTTCCTTCACAAAGATCTGTCCCATTCGCCATGCCGAAGCAT
GTTGCCCAGCCGGCGCC 

Self annealing 
primers 
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OA16-S1 
OA16-S2 
OA16-S3 
OA16-S4 

CCTATCCGGGCGAACTTTTG 
AAGAGGTCATCCTGCTGGAC 
TCAAATACAGCTGGAGATTG 
TATCCGTGGTCAAGTCAAAG 

Sequencing 
primers for white 
(S1 and S2) and 
yellow (S3 and S4) 
loci 
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