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Abstract
Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often
leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two
broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the
cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental
processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that:
(1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target
sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge
of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for
controlling insect pests.

Opening section

Decades ago, science writers like Richard Dawkins and
Robert Trivers helped popularize the term selfish genes
(Dawkins 1977; Burt and Trivers 2006). It is an especially
appropriate descriptor for genetic elements like transposons
(a.k.a., “jumping genes”) and viruses, which hijack certain
cellular processes in order to replicate and spread them-
selves. And in doing so, they can impose ill effects on the
organism (Orgel and Crick 1980; Hurst et al. 1996; Hurst
and Werren 2001; Werren 2011; McLaughlin and Malik
2017). The selfish genes term also applies to more esoteric
cases, like certain “housekeeping” genes with essential,
though not-so-captivating cellular functions, but which,
through duplication and mutational change, have obtained

the selfish property of being transmitted at extraordinarily
high frequencies (Powers and Ganetzky 1991; Larracuente
and Presgraves 2012). Some non-coding sequences have
alternative forms, or alleles, that are selfish, such that they
can block the transmission of non-selfish alleles in order to
outcompete them (Bengtsson 1977; Bengtsson and Uye-
noyama 1990; Hurst et al. 1996; Fishman and Kelly 2015).
To imagine that the individual elements of the genome can
behave in these bullish ways when their actions are at odds
with the wellbeing of the organism underscores why they
have commanded such strong scientific interest.

Another less commonly known group of selfish agents
has similarly captivated biologists. This group includes a
number of bacterial symbionts—those that spend their
entire life cycles within the cell cytoplasm or extracellular
fluids of their eukaryotic hosts (Werren et al. 2008; Weinert
et al. 2015)—and, oddly, whole chromosomes (Bell and
Burt 1990; Camacho 2005; Borisov and Myshliavkina
2019).

What unites these two very different types of selfish
agents and makes them so intriguing? First, they are per-
vasive within the arthropods, especially among insects (Zug
and Hammerstein 2012; Weinert et al. 2015; D’Ambrosio
et al. 2017). Certain selfish bacterial symbionts are esti-
mated to infect more than 70 percent of all insect species
(Hilgenboecker et al. 2008). Second, in comparison to
selfish genes, these agents are much larger, on the scale of
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organelle size. This characteristic is helpful for experi-
mentation; both bacteria and chromosomes can be visua-
lized using standard fluorescence microscopy, providing
researchers the ability to directly observe their dynamics in
host cells and tissues.

The third and most important unifying characteristic of these
selfish agents is what makes them selfish: the profound effects
they have on the reproduction of their hosts. The majority of
these agents were discovered because they strongly influence
host population dynamics, in many cases leading to severely
distorted sex ratios (Tram et al. 2003, 2006; Ferree et al. 2008;
Fukui et al. 2015). Evolutionary biologists were quick to note
the negative impacts on host fitness (Moran et al. 2008). The
range of reproductive manipulations is wide, each type corre-
sponding to how a given selfish agent is transmitted. Like
mitochondria, bacterial symbionts are easily transmitted from
mothers to their offspring through the egg’s large volume of
cytoplasm. In contrast, sperm, which are minuscule with lim-
ited cytoplasm, are lousy transporters. Therefore, these bacteria
tend to alter host reproductive processes so that host sex ratios
are skewed toward females or, at minimum, that infected
females are selectively favored over uninfected ones (Moran
et al. 2008).

To illustrate, certain strains of the rickettsia-like alpha-
proteobacterium, Wolbachia, are believed to alter the
sperm-donated hereditary material in the testes of infected
male insects (Table 1) (Tram et al. 2006; Riparbelli et al.
2007). If these sperm fertilize eggs from an uninfected
female, then the alteration becomes realized: the sperm’s
chromatin becomes transformed into a “blob” instead of
nicely formed chromosomes, just before the embryo begins
cell division (Tram et al. 2006; Riparbelli et al. 2007). This
effect renders the sperm’s chromatin incapable of normal
segregation, causing mitotic abnormalities, such as chro-
mosome bridges and chromatin fragments during the first
and subsequent divisions (Lassy and Karr 1996; Callaini
et al. 1997; Tram 2002). In any host species that is diploid
—i.e., those needing a chromosome set from each parent—
this effect leads to death. However, if a Wolbachia-affected
sperm happens to fertilize an egg from a female that is
infected with the same Wolbachia strain, these deleterious
effects are mysteriously suppressed, resulting in normal
embryonic development. Another bacterium, Cardinium
(Bacterioidetes), which infects ~9% of arthropods, also
elicits the same reproductive manipulation in the parasitic
wasp, Encarsia suzannae (Table 1) (Hunter et al. 2003;
Wedell 2008; Gebiola et al. 2017). This overall effect,
termed cytoplasmic incompatibility (CI), strongly favors
Wolbachia- and Cardinium-infected females over unin-
fected ones (Tram et al. 2006; Riparbelli et al. 2007). By
giving a reproductive advantage to infected hosts, these
bacteria selfishly facilitate their own spread (reviewed by
(Poinsot et al. 2003; Tram et al. 2003)).

Interestingly, it is not just these CI-inducing bacteria that
affect the sperm-donated chromatin for selfish gain. At least
three different wasps are known to carry extra, non-essential
chromosomes, or B chromosomes collectively called PSR,
which cause a similar effect (for Paternal Sex Ratio) (Hunter
et al. 1993; Stouthamer et al. 2001; Werren and Stouthamer
2003). Like Wolbachia, PSR chromosomes mysteriously
prevent the sperm’s chromatin from transforming into
individual chromosomes, causing it to be destroyed (Reed
and Werren 1995). Wasps are haplo-diploid, which means
that males normally arise from unfertilized eggs having just
the egg’s single chromosome set, while females develop
from fertilized eggs, which have two chromosome sets, one
from the egg and the other from the sperm. Because of this
unique reproductive system, destruction of the sperm-
donated chromatin by a PSR chromosome does not lead to
death but instead forces female-destined eggs to develop
into males. At the population level, the host sex ratio
becomes severely male-biased. One may figure that these
effects must somehow benefit the spread of the PSR chro-
mosome, and indeed, they do. Unlike maternally trans-
mitted Wolbachia, a PSR chromosome is transmitted within
the sperm’s nucleus to new progeny (i.e., paternally) (Reed
and Werren 1995). The PSR chromosome enters the egg at
fertilization along with the sperm’s poisoned hereditary
material, but it mysteriously escapes the poisoning effect
(Reed and Werren 1995). During the first cell division, the
PSR chromosome is replicated normally and transforms into
individualized chromatids, which successfully migrate with
the egg’s chromatids into daughter cells, and, eventually, to
all cells of the adult animal. The upshot is the production of
more than 90% PSR-carrying, -transmitting males (Reed
and Werren 1995).

These two examples illustrate a general rule: if the
transmission of a selfish agent is restricted to one sex, then
its reproductive manipulation will bias the sex ratio toward,
or give a selective advantage to, that particular sex. It is also
important to point out that there are other ways that selfish
agents, especially bacterial symbionts, can cause sex ratio
bias. For example, certain strains of bacteria including
Spiroplasma, Wolbachia, and Arsenophonus cause female
sex ratio bias by killing host males (Table 1) (Hurst and
Jiggins 2000). This may sound harsh, but the rationale is as
follows: males represent a dead-end for bacterial transmis-
sion, so, directly speaking, their death is not a hindrance to
bacterial spread. Instead, and more importantly, male death
is believed to provide infected females better access to
limited resources, allowing them to produce healthier and
greater numbers of infected progeny. Thus, male killing
indirectly enhances bacterial spread (Riparbelli et al. 2012).
An important aspect to note is that the male-killing effect is
not complete; a few males usually survive in each brood.
This characteristic is essential since the death of all males
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would prevent any fertilization, thereby harming both host
and selfish agent. Different Wolbachia strains can cause
female-biased sex ratio distortion in still other ways,
including parthenogenesis (i.e., virgin birth), in which
infected females produce all-female broods of progeny in
the absence of fertilization by males (Pannebakker et al.
2004; Kremer et al. 2009), and feminization, in which
genetic males are converted into reproductively functional
females (Kageyama et al. 2017; Miyata et al. 2017; Ma and
Schwander 2017).

There have been many detailed reviews written on the
life histories, genetics, and evolutionary impacts of sex
ratio-distorting agents (Hurst and Werren 2001; Werren and
Stouthamer 2003; Werren 2011; Perlman et al. 2015; Ågren
and Clark 2018; Doremus and Hunter 2020). Our primary
aim here is not to replicate these works but instead to
highlight a handful of select aspects for specialists and non-
specialists alike. We hope so far to have conveyed some
odd and fascinating aspects of these sex ratio-distorting
agents, which have enticed many biologists to devote their
careers to studying them. We now turn to several out-
standing questions that have perplexed researchers in this
field for decades—questions that fit within the greater,
overarching goal of understanding how these selfish agents
usurp the developmental processes of their hosts. In doing
so, we highlight findings from recent studies that are finally
allowing us to make mechanistic comparisons among sev-
eral of the more well-studied selfish agents.

Do different selfish agents target common
developmental processes?

The answer is yes and no, depending on the particular
selfish agents being compared. Consider the three differ-
ent bacteria capable of inducing male killing: Spir-
oplasma, Wolbachia, and Arsenophonus. Spiroplasma, a
spirochete belonging to the Mollicute class of bacteria,
infects several different species of fruit flies (of the Dro-
sophila genus). Early studies showed that Spiroplasma-
infected Drosophila melanogaster male embryos undergo
the early mitotic “cleavage” divisions normally. However,
mitotic defects, such as chromosome bridges and oddly-
misshapen nuclei begin to appear shortly after the process
of cellularization (i.e., when the thousands of nuclei in the
young embryo obtain plasma membrane and, in doing so,
become individualized) (Martin et al. 2013; Harumoto
et al. 2014). Shortly thereafter, the cells of the newly
forming central nervous system and other surrounding
tissues begin to look highly irregular (Martin et al. 2013;
Harumoto et al. 2014), and as time goes on, these embryos
undergo programmed cell death (Martin et al. 2013;
Harumoto et al. 2014).

To uncover the cause of these cellular defects,
researchers aspired to determine which male-specific pro-
cess is disrupted by Spiroplasma. Several clues led to the
conclusion that this bacterium targets dosage compensation,
a process that adjusts the level of transcription of genes
located on the male’s single X chromosome to match gene
expression levels in females, which have two X chromo-
somes. Dosage compensation in D. melanogaster is medi-
ated by a conglomerate of proteins and RNA called the
dosage compensation complex (DCC), which only forms in
males (Gelbart et al. 2009). The DCC contains an enzymatic
component that acetylates one of the main histones, H4,
across the entirety of the male’s X chromosome, tweaking
its chromatin into a state that leads to higher gene expres-
sion (Gelbart et al. 2009). In one experiment, loss-of-
function mutations in several genes that encode DCC pro-
teins were shown to alleviate the male-killing effect (Veneti
2005). In another experiment, forced formation of the DCC
in females through some genetic trickery caused female
death if the females were Spiroplasma-infected, but not if
they were uninfected (Cheng et al. 2016). And finally,
microscopic imaging of infected male embryos revealed
that the DCC, which normally associates with the male’s
single X chromosome, becomes sticky to the non-sex
chromosomes (Cheng et al. 2016). This effect likely leads to
global gene mis-expression, which was found to occur just
before the embryonic cells begin to look abnormal (Cheng
et al. 2016). The interpretation is that this gene mis-
expression leads to the observed tissue abnormalities and
cell death (Cheng et al. 2016).

Certain strains of Wolbachia also can cause male killing
in a number of fly species including Drosophila bifasciata,
D. innubila, D. borealis, and D. recens (Hurst et al. 2000;
Jaenike 2007; Unckless and Jaenike 2012). Interestingly,
the CI-causing wMel strain of Wolbachia appears to have
the genetic machinery to elicit male killing, although it does
not do so in its natural host, D. melanogaster (Metcalf et al.
2014; Richardson et al. 2016; Perlmutter et al. 2019). In a
subsequent section we will mention a recently identified
wMel phage gene that causes male killing when expressed
transgenically. However, what is important to note here are
the resulting cellular defects: the appearance of chromatin
bridges that become hyperacetylated and show signs of
DNA damage, reminiscent of what happens in Spir-
oplasma-infected males (Riparbelli et al. 2012; Perlmutter
et al. 2019). These findings suggest that certain strains of
Wolbachia, like Spiroplasma, induce male embryonic death
by disrupting DCC activity (Veneti 2005; Harumoto et al.
2016, 2018).

Now, consider Arsenophonus, a member of the Gam-
maproteobacteria class, which kills males in the jewel wasp,
Nasonia vitripennis (Table 1) (Ferree et al. 2008). The
cellular target of Arsenophonus is a population of organelles
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that are unique to wasps and many other insects with haplo-
diploid reproduction—we will refer to these organelles as
maternal centrosomes (Schatten 1994; Callaini et al. 1999).
In animals with purely diploid reproduction, such as fruit
flies and humans, all eggs must be fertilized. A major reason
is that a part of the sperm’s tail transforms into a pair of
centrosomes, or microtubule organizing centers, just after
fertilization (Schatten 1994; Callaini et al. 1999). These
organelles build the microtubule-based spindle apparatus,
which is needed to facilitate cell division. In the absence of
these sperm-derived centrosomes, an egg cannot proceed
into embryonic development. However, in haplo-diploid
insects, eggs possess the unique ability to form hundreds of
centrosomes de novo, or entirely from components in the
egg’s cytoplasm (Tram and Sullivan 2000; Ferree et al.
2006). These maternal centrosomes appear in all N. vitri-
pennis eggs immediately after they are laid. If fertilization
occurs, the egg preferentially uses the sperm-derived cen-
trosomes to initiate cell division, while the maternal cen-
trosomes go unused and disappear. If, instead, the egg is not
fertilized, two of the maternal centrosomes are selected to
facilitate cell division (Tram and Sullivan 2000; Ferree et al.
2006). Interestingly, when Arsenophonus is present, the
maternal centrosomes are blocked from forming (Ferree
et al. 2008). As a result, the egg-derived chromatin attempts
to undergo mitosis, but without an organized spindle
apparatus no cell division occurs, and development is
arrested. To be clear, fertilized, female-destined embryos
are not affected because they do not rely on maternal cen-
trosomes. It is currently a mystery how Arsenophonus
blocks maternal centrosome formation, but one possibility
is that the bacterium interferes with specialized vesicles
called accessory nuclei, which form during egg develop-
ment and appear to seed maternal centrosome formation
when the egg is laid (Ferree et al. 2008).

It is evident from these studies that Spiroplasma and
Wolbachia target a completely different developmental
process compared to Arsenophonus. In each case, the dis-
rupted process is a unique feature of the male development
of each host insect. However, CI-causing bacteria and the
PSR chromosome target the same developmental process:
as already mentioned, both agents alter the sperm’s chro-
matin, causing it to be destroyed immediately after fertili-
zation (Reed and Werren 1995). This fact begs a more
specific question: do these agents target the same molecular
aspect of the sperm-donated chromatin?

It may be somewhat premature to answer this question
because there have been so few studies geared toward this
fine scale. In addition, the experiments conducted on these
two agents have been performed in different organisms and
with different methodological tools, making comparisons
difficult. For example, one study tested whether the sperm-
donated chromatin undergoes several important steps

between fertilization and the first cell division in fruit fly
embryos that are infected with CI-causing Wolbachia
(Landmann et al. 2009). It was observed that protamines,
specialized non-histone proteins that package sperm DNA,
seemed to be properly removed just after fertilization
(Landmann et al. 2009). However, there was a lag in the
subsequent appearance of the transitional histone, H3.3, as
well as a delay in replication of the sperm-derived DNA,
after protamine removal (Landmann et al. 2009). A different
study examined the patterns of important chemical marks to
histone proteins in jewel wasp embryos carrying the PSR
chromosome. Three different chemical marks to histones,
out of a total of ~20 tested, appeared abnormally spread
across the sperm-donated chromatin, instead of appearing in
distinct regions as they should (Aldrich et al. 2017). Pro-
tamine removal and histone H3.3 appearance were not
directly addressed in this study. However, it was concluded
that these events likely occur normally because they are
requirements for loading of the main histones, which did
appear on the sperm-donated DNA (Aldrich et al. 2017).

The results from these studies demonstrate that both CI-
causing Wolbachia and PSR do indeed disrupt the integrity
of the sperm-donated chromatin. However, in each case it
could not be determined whether the particular chromatin
defects observed were the result of direct disruption or were
instead secondary effects from some other chromatin dis-
ruption. Nevertheless, the odds are in favor of these two
agents targeting different molecular factors. Why might this
be? For one reason, the chromatin blob caused by Wolba-
chia is considerably less compact than that caused by PSR,
indicating some difference in chromatin structure (Reed and
Werren 1995). Another reason is more speculative—that
there are many different chromatin-related genes, such as
sesame/hira, chd1, and maternal haploid—each of which
when disrupted by mutation, results in a sperm-donated
chromatin blob (Loppin et al. 2001; Bonnefoy et al. 2007;
Konev et al. 2007). These genes, and others, play critical
roles in the remodeling of the sperm’s chromatin during
spermatogenesis and after fertilization (Rathke et al. 2014).
In effect, there is a whole repertoire of steps in this pathway,
any of which could be affected by Wolbachia or PSR to
destroy the sperm’s chromatin. Much remains to be deter-
mined regarding the host factors being targeted, and these
genes are excellent candidates for experimental testing.

Is the developmental time of manipulation
by different selfish agents similar?

The selfish agents highlighted so far, and others that have
been less extensively studied, cause reproductive manipula-
tions that are manifested very early in development—during
embryogenesis. With few exceptions, the main stages of
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development are similar enough among insects that we can
use the fruit fly as a good proxy for consideration here. The
time it takes for a fertilized egg to reach adulthood in this
insect is 12 days at room temperature (Ashburner 1989). The
first period, embryogenesis, is complete by ~24 h after egg
laying. Subsequently, the animal transforms into a crawling
larva whose sole job during the next 5 or so days is to eat and
grow (Ashburner 1989). The final 5–6 days involve pupal
development, involving formation of the adult tissues and
appendages. Interestingly, most reproductive manipulations
occur well within the first half of development. Elimination
of the sperm-donated chromatin, caused by Wolbachia and
PSR chromosomes, happens within the first hour after ferti-
lization (Reed and Werren 1995). The blocking of maternal
centrosome formation by Arsenophonus in the jewel wasp
(whose developmental trajectory and timing are nearly
identical to those of the fruit fly) happens even earlier, during
egg laying (Ferree et al. 2008). Disruption of dosage com-
pensation by Spiroplasma ensues between 8 and 10 h into
embryogenesis (Cheng et al. 2016). Embryonic defects
caused by Wolbachia-induced male killing appear slightly
earlier (3–4 h after egg laying) (Perlmutter et al. 2019). A
couple of outlier examples are feminization, which occurs in
some butterfly species through hormonal manipulation dur-
ing the late pupal stage (Narita et al. 2007; Negri 2012), and
late male killing (Hurst 1993), which has been documented
to occur during late larval development in some mosquito
species (Andreadis and Hall 1979; Andreadis 1985) and
during pupation in the oriental tea tortrix (moth), Homona
magnanima (Morimoto et al. 2001).

Why do most reproductive disruptions happen rather early
in development? A large number of fundamental develop-
mental decisions are made during embryogenesis and shortly
thereafter. These include the establishment of cell fates, deli-
neation of the main body regions, and formation of the tissues,
organs, and limbs. Embedded within these landmark events are
certain cellular differences that distinguish the sexes. In prin-
ciple, it is possible for a sex ratio-distorting agent, such as
Spiroplasma or Arsenophonus to kill males during late devel-
opment or adulthood. However, the male-specific features and
processes that are targeted by these particular endosymbionts,
as well as those targeted by other selfish agents, appear very
early. It stands to reason that the reproductive manipulations
will ensue whenever the sex-specific developmental differences
are first manifested during development.

Are there functional similarities among the
effector genes produced by sex ratio-
distorting agents?

There are two sides of the metaphorical coin when
attempting to understand the effects of selfish agents. The

first side, already discussed, is knowing which host cellular
processes are disrupted, and in what ways. The other side is
identifying how selfish agents target these processes.

An unspoken assumption has been that selfish agents
produce factors—proteins or perhaps structural RNAs—that
bungle the targeted reproductive processes (Akbari et al.
2013; Li et al. 2017). The past several years have been a
very fruitful period for the discovery of the effector genes
that produce these factors. One of the first to be identified is
a Spiroplasma-encoded gene termed spaid (for Spiroplasma
poulsonii androcidin), which plays a role in male killing in
the fruit fly (Harumoto and Lemaitre 2018). Three different
effector genes were found to be encoded by Wolbachia
bacteriophages: wmk, which also is implicated in male
killing, independently of spaid (Perlmutter et al. 2019), and
cifA and cifB, which are involved in CI in D. melanogaster
(LePage et al. 2017) and the mosquito Culex pipiens
(Beckmann et al. 2017). Finally, an effector gene called
haploidizer is expressed by PSR to cause paternal genome
elimination in the jewel wasp (Dalla Benetta et al. 2020).

What do we know so far about these effector genes? For
starters, four of them—spaid, wmk, and cifA/cifB—are
capable of recapitulating the reproductive manipulation of
its respective selfish agent when expressed transgenically.
Thus, each gene, or set of genes in the case of cifA/cifB, is
sufficient for reproductive manipulation (Beckmann et al.
2017; LePage et al. 2017; Perlmutter et al. 2019).

There is also mounting evidence for how these effector
genes function. spaid encodes a protein with two notable
regions—one containing several ankyrin repeats and
another with homology to the deubiquitinase gene otu
(ovarian tumor), which is found in higher eukaryotes. Both
the ankyrin repeats and the OTU domain are conserved in
proteins across eukaryotes (Harumoto and Lemaitre 2018).
The Spaid protein was shown microscopically to co-localize
with the DCC in lethal male embryos (Harumoto and
Lemaitre 2018). When the ankyrin repeats were deleted,
Spaid failed to co-localize with the DCC and the male’s X
chromosome (Harumoto and Lemaitre 2018). These find-
ings support a model for male killing in which the Spaid
protein associates with the DCC via its ankyrin repeats,
causing this complex to mis-localize (Harumoto and
Lemaitre 2018), in turn leading to a failure of normal
chromatin remodeling on the X chromosome and inap-
propriate remodeling in other regions of the genome.

The function of the cifA/cifB genes in CI is a bit more
complicated. Here we highlight some general characteristics
of these genes. However, more extensive descriptions can
be found in two recent reviews (Chen et al. 2020; Shrop-
shire et al. 2020). The cifs (cif is short for CI factor) fall into
two general co-expressed gene pairs: cidA/cidB and cinA/
cinB. These nuanced names stem from the fact that cidB
encodes a protein containing an active deubiquitylase
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domain while cinB’s encoded protein has two active
nuclease domains (Beckmann et al. 2017; LePage et al.
2017). Incidentally, the CidB protein contains two nuclease
domains similarly to CinB but they are degenerate and so
not catalytically active (Beckmann et al. 2017; LePage et al.
2017; Chen et al. 2019). Neither CidA nor CinA contain
any domains conferring catalytic activity (Lindsey et al.
2018; Shropshire et al. 2018). Both gene pairs are expressed
by CI-causing Wolbachia in D. melanogaster and C.
pipiens (Beckmann et al. 2017; LePage et al. 2017). Inter-
estingly, transgenic expression of either cifA/cifB pair in the
fruit fly’s testis causes elimination of the sperm-donated
chromatin (Beckmann et al. 2017; LePage et al. 2017),
leading to the idea that there may be two different ways to
elicit CI (Chen et al. 2020). In contrast, expression of cifA
alone can suppress this effect (Beckmann et al. 2017;
LePage et al. 2017). These findings have led to the general
idea that CifA and CifB together disrupt some aspect of the
sperm’s chromatin (the CI activity) while CifA somehow
reverses or suppresses this disruption (the rescue activity)
(Shropshire and Bordenstein 2019). Generally, while it is
clear that CifA is needed in the egg’s cytoplasm for rescue,
it is not known whether the CI activity of CifA/CifB occurs
in the testis or the egg just after fertilization (Chen et al.
2020; Shropshire et al. 2020). In addition, it is currently not
understood whether CI results from the chemical mod-
ification of some sperm chromatin factor (which is rescued
by either chemical reversal or secondary suppression in the
egg) or instead from non-chemical interference of an
important step in sperm chromatin dynamics (Shropshire
et al. 2020; LePage et al. 2017; Chen et al. 2019, 2020;
Shropshire and Bordenstein 2019).

Equally important will be experiments that reveal the
specific host factors that interact with CifA and CifB.
Although no microscopic studies have yet been performed
on the Cif proteins, a yeast 2-hybrid screen and, separately,
affinity column chromatography combined with mass
spectrometry, were used to search for physical interactions
of the Cif proteins with certain host proteins (Beckmann
et al. 2019). Interestingly, although not surprisingly, two of
the top interacting proteins for CifB were P32 and NAP1,
which are involved in the exchange of protamines for his-
tones after fertilization (Beckmann et al. 2019; Chen et al.
2019). Thus, it may be that CifA and CifB disrupt the
protamine-to-histone transition. We note that this scenario
appears to be inconsistent with a previous observation noted
earlier: that protamines appear to be removed from the
sperm’s chromatin in D. melanogaster CI embryos at the
microscopic level (Landmann et al. 2009). However, it may
be that subtle perturbations, such as retention of trace
amounts of protamines at levels undetectable by micro-
scopy, are enough to cause subsequent chromatin remo-
deling abnormalities. Consistent with this idea, it was

previously suggested that CifB could, through its nuclease
domains, associate with transiently naked paternal DNA
during the protamine-to-histone transition to disrupt this and
downstream chromatin processes (Beckmann et al. 2019;
Chen et al. 2019).

As of now, such functional studies have not been con-
ducted on wmk or haploidizer. However, the predicted
proteins of each of these two genes contain predicted DNA-
binding regions that are commonly found in transcription
factors (Perlmutter et al. 2019; Dalla Benetta et al. 2020). In
the case of haploidizer, it is known that there is no note-
worthy effect of this gene on the expression of the wasp’s
genes (Akbari et al. 2013), and elimination of the sperm-
derived chromatin happens well before gene transcription
begins in the young embryo (Reed and Werren 1995). Thus,
at least for haploidizer, the DNA-binding domain of its
encoded protein may provide it with a general ability to
associate with chromatin.

In general, the genetic toolkits used by these agents for
reproductive manipulation are quite simple, each expressing
one or two major effector genes. These genes encode pro-
teins that either have the potential or have been verified to
associate with host proteins or DNA. In addition, there is
mounting evidence that several of these bacterial proteins
interact with host proteins of disrupted male-specific
processes.

Concluding remarks

What originally stimulated interest in these organelle-sized
selfish agents were their striking effects on host sex ratios and
other aspects of host population dynamics. As a result,
population geneticists and evolutionary biologists were the
first to appreciate their importance (Dawkins 1977; Hurst and
Werren 2001; Werren 2011). Subsequently, researchers in the
areas of classical genetics, genomics, cell, and developmental
biology became interested in understanding how selfish
agents interact with the host cellular environment in order to
replicate, induce reproductive alterations, and effectively
transmit themselves through the gametes to progeny. Through
recent and ongoing efforts, we are coming to know the genes
that cause reproductive manipulation and how they work. We
are also coming closer to solving some long-standing puzzles.
For example, it has been known for decades that certain CI-
causing strains of Wolbachia are incapable of suppressing
genome elimination caused by different Wolbachia strains
(Perrot-Minnot et al. 1996; Werren 1997; Charlat et al. 2005).
The discovery of the Cif proteins as major effectors of CI may
help to explain this bacteria-strain-incompatibility, such as if
CifA and CifB from the same Wolbachia strain have co-
evolved together for their function, perhaps through physical
interaction.
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In addition, there may be other benefits to this work,
including the advancement of the long-held goal of using
selfish agents like Wolbachia to control insect pests. For
example, researchers have developed strategies for releasing
large numbers of male Aedes aegypti mosquitoes infected
with CI-causing Wolbachia into mosquito populations that
are not Wolbachia-infected (Hoffmann et al. 2011; Zhang
and Lui 2020). The hope is that the sterility effect resulting
from the introduced males mating with uninfected females
will lead to substantial reductions in mosquito populations,
thus hindering insect spread (and, concomitantly, the human
disease-causing viruses and other pathogens that they
carry). This strategy has certain downfalls: to name a few,
(1) it is energy-intensive, relying on iterative releases of
adult infected male mosquitoes, (2) accidental release of
infected females could result in the Wolbachia strain
sweeping through the population, thereby undermining the
sterilizing effect, and (3) efficient Wolbachia transmission
in insect populations can be sensitive to environmental
factors, such as fluctuation in temperature (Perrot-Minnot
et al. 1996; Charlat et al. 2005; Ye et al. 2016). Now, with
the knowledge of the CI genes in hand, researchers may be
able to develop artificial gene drive systems based on the CI
genes to sweep certain “cargo” genes through pest insect
populations. Such cargo genes could encode factors that
cause insect sterility or lethality, or they could affect insect
mating behavior (Burt 2003; Alphey 2014). Moreover,
certain reproductive manipulations, such as PSR’s genome
elimination activity, show nearly unwavering strength
across varying environmental conditions (Werren and
Stouthamer 2003), making them promising as more
“unbreakable” systems for pest manipulation once their
underlying mechanisms are better understood. Broadly, just
as the last few decades have seen great progress in under-
standing how selfish bacteria and B chromosomes manip-
ulate their insect hosts, the next few hold potential for
equally exciting advances in this area.
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