THE AKBARI LAB
  • Home
  • People
  • Publications
  • News Press/Blog
  • Patents
  • Pictures
  • Contact

Gene Drives and the Potential Benefits of CRISPR Technology

4/10/2018

0 Comments

 
Picture
GENE DRIVES AND THE POTENTIAL BENEFITS OF CRISPR TECHNOLOGY

​APRIL 9, 2018

BY MATTHEW EDGINGTON


Marshall and Akbari review a range of different proposed gene drive systems and discuss ways in which CRISPR may be useful in engineering them in a recent issue of ACS Chemical Biology.
In the years since translocations were first suggested as a genetics-based method for the control of insect populations, a number of different gene drive strategies have been proposed. To date, progress toward fully functioning versions of each of these systems has been extremely varied. As such, the rapid advancement of CRISPR gene editing technology has given hope that the development of a wide range of gene drive systems should be simplified and accelerated.
A SELFISH GENE (BLUE) SPREADING THROUGH A MOSQUITO POPULATION
This review is organised according to the expected behaviour of the systems discussed. In particular, the authors discuss threshold-dependent drives (translocations and engineered underdominance), threshold-independent drives (Medea, homing-based systems and driving Y chromosomes) and temporally self-limiting drives (killer-rescue and daisy drives). For each system discussed, the authors outline key details including the drive mechanism, predicted dynamics following release into a wild population and current progress toward engineering them.
For the non-CRISPR-based systems discussed here (i.e. translocations, engineered underdominance, Medeaand killer-rescue), a number of ways in which CRISPR technology could accelerate gene drive development are proposed. Specifically, the authors note that CRISPR should provide a new means of engineering lethal toxins and also that CRISPR has already been used to generate site-specific chromosomal translocations.

THE TOXIN-ANTIDOTE – BASED DRIVE SYSTEM KNOWN AS MEDEA. EMBRYOS WITHOUT MEDEA WILL DIE BECAUSE OF MATERNALLY DEPOSITED ‘TOXINS’.


While discussing threshold-independent drive systems, the authors point out the need to develop remediation measures in case such a system were to produce unintended/undesirable consequences. As such, for Medeathey discuss the possibility of releasing a second generation element that should spread at the expense of both the original version and the wild-type allele. For homing-based systems a range of different remediation strategies are discussed, namely ERACR, CHACR and an immunizing reversal drive. As these are summarized in the review, we do not outline their workings here.

​
AN EXAMPLE OF AN ENGINEERED UNDERDOMINANCE SYSTEM
Finally, the authors discuss the recently proposed (and not yet developed or extensively modelled) daisy quorum drive system. Briefly, this would use either a daisy-chain or daisyfield drive system to produce an underdominance effect in a target population. Thus, daisy quorum is proposed as a method for generating threshold-dependence using a temporally self-limiting drive system.
This paper provides a good review of a range of different gene drive strategies, some challenges encountered in engineering them and opportunities whereby CRISPR technology could help simplify/accelerate the development of these systems.
John M. Marshall and Omar S. Akbari (2018) Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology. ACS Chem. Biol. 13. 424-430 https://pubs.acs.org/doi/abs/10.1021/acschembio.7b00923




Picture
0 Comments



Leave a Reply.

    Archives

    March 2023
    February 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    June 2022
    May 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    January 2021
    December 2020
    September 2020
    August 2020
    July 2020
    May 2020
    February 2020
    July 2019
    December 2018
    November 2018
    September 2018
    June 2018
    April 2018
    February 2018
    January 2018
    December 2017
    November 2017
    September 2017
    August 2017
    July 2017
    February 2017
    December 2016
    October 2016
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    November 2015
    October 2015
    December 2014

    RSS Feed

© COPYRIGHT www.Akbarilab.com 
​ALL RIGHTS RESERVED.
Picture
  • Home
  • People
  • Publications
  • News Press/Blog
  • Patents
  • Pictures
  • Contact